Interferon Gamma Release Assays and the Diagnosis of Latent Tuberculosis

Thomas E Dobbs MD, MPH
Health Officer, District VII/VIII
Mississippi State Department of Health

Slide 2

Transmission
• Small droplets (<100µm) coughed up by pulmonary TB patients aerosolize and float through the air
• These droplets fall to the ground faster in humid conditions
• Small droplets containing TB bacilli settle in lung alveoli
• Bacilli are ingested by alveolar macrophages
Survival and Proliferation

• Bacilli survive and proliferate within macrophages
• Bacilli kill macrophages, are ingested by new macrophages and continue to proliferate
• Bacilli spread to lymph nodes and spread systemically

Host Immune Response

• Cell mediated immunity (T-Cell directed) coordinates immune response
• Immune system contains/limits bacilli growth

OR

• There is an ineffective immune response and the patient progresses to primary disease

Exposure to Infectious patients

No infection (70%)
Infection (30%)
Early progression (5%)
Containment (95%)
Late progression (5%)
Continued containment (90%)
Natural History of TB Infection
Slide 7

Natural History of TB Infection

- Exposure to Infectious patients
 - No infection (70%)
 - Infection (30%)
 - Early progression (5%)
 - Containment (95%)
 - Late progression (5%)
 - Continued containment (90%)
Slide 10

PPD

- Purified Protein Derivative — developed in 1939 by Florence Siebert in Philadelphia
- Precipitate prepared by filtration of Old Tuberculin
- Mixture of ~170 different proteins
- Intradermal injection leads to delayed type hypersensitivity for those with prior exposure

Slide 11

Recent TB Timeline

- 1882: Robert Koch discovers TB Bacillus in Berlin
- Tuberculin developed as "cure" for TB
- 1896: Tuberculin (PPD) standardized for diagnosis of TB
- 1940: Tuberculin (PPD) standardized for diagnosis of TB
- 1950: BCG Vaccine
- 1921: FDA approves QFT-Gold
- 2008: FDA approves T-SPOT.TB

Slide 12

Diagnosing Latent TB

- Tuberculin Skin Testing
- IGRA’s (Quantiferon and T-spot)
- Do not differentiate between Latent and Active Disease!!!
Testing for M. tuberculosis Infection

- Mantoux tuberculin skin test (TST)
 - Skin test that produces delayed-type hypersensitivity reaction in persons with M. tuberculosis infection

- Interferon-gamma Release Assays
 - Blood tests that measures and compared amount of interferon-gamma (IFN-γ) released by blood cells in response to antigens
 - QuantiFERON® TB tests
 - QuantiFERON® Gold
 - QuantiFERON® Gold-IT
 - T-SPOT.TB

Tuberculin Skin Test

ISRA's

ESAT-6, CFP-10, TB7.7 - antigens quite specific to TB (not on M avium or BCG)
Slide 16

Purpose of Targeted Testing

- Find persons with LTBI who would benefit from treatment to prevent disease
- Find persons with TB disease so that treatment can be started

Groups that are not at high risk for TB should not be tested routinely

Slide 17

IGRA

- Quantiferon
- T-spot

Slide 18

Brief History of IGRA's

- Quantiferon – initially developed as a test for Bovine TB in Cattle
- Whole blood incubated with PPD for 16-24 hours
Evolution of Quantiferon Assay

- QFT - Whole blood incubated with PPD
- QFT Gold – Whole blood incubated with TB antigens ESAT-6 and CFP-10
- QFT Gold In Tube - Whole blood incubated with TB antigens ESAT-6, CFP-10 and TB 7.7

How do IGRA’s Differ from TST

- TST – nonspecific extract of attenuated MTB strain
- QFT Gold IT – ESAT-6, CFP-10, TB 7.7
- T-Spot – ESAT-6, CFP-10

Problems with TST

- Non-specific for MTB (other NTM’s and BCG)
- Subjectivity of Reading
- Second visit required
Slide 25

- TB Ag – Nil > 0.35 IU/ml (and that value > 25% Nil with appropriate controls) = Positive

Slide 26

- T-spot

Slide 27

- Methodology of T-Spot
 - 250,000 Peripheral Blood Mononuclear Cells are collected from whole blood and placed in well
 - Cells producing Gamma-interferon due to TB antigen exposure counted and compared to controls
 - Benefit of standardization of cell numbers
Slide 28

Sensitivity of IGRA

- Meta-analysis*:
 - Elispot: 88%
 - QFT: 76%
 - TST: 70%
- IGRA’s possibly more sensitive in immunocompromised

Slide 29

Enhanced Specificity vs. TST

- NTM (MAC) –
 (with exception of M kansasii, M szulgai, M. marinum)
- BCG

Slide 30

Skin test reactions to Mycobacterium tuberculosis purified protein derivative and Mycobacterium avium sensitin among health care workers and medical students in the United States.

- Dual skin testing was performed with PPD and Mycobacterium avium sensitin on 794 health care workers and medical students in the northern and southern US.
- CONCLUSIONS: Infections with NTM are responsible for the majority of 5-14 mm PPD reactions among US-born health care workers and medical students subject to annual tuberculin testing.
Low Risk TST Positives with Subsequent QFT Gold - IT
District VIII MS
TST positive (>10 mm)
N = 49
QFT+
Treat for LTBI
N = 4
-
No treatment
N = 44
Indeterminate
N = 1

IGRA’s
• The problems related to IGRA’s include:
 - Cost of the test kits
 - Equipment
 - Personnel
 - Need for blood drawing
 - Time barrier for specimen processing and analysis

• Benefits
 - No need for return to clinic
 - Shelters, prisons & jails
 - No false positive from prior BCG vaccination or most NTM's
 - Non-subjective Interpretation (inter-reader variability)

Time Barriers for IGRA’s
• Quantiferon –
 - Must incubate within 16 hours of collection
 - Incubation 37C 16-24hrs
 - After incubation, may store up to 72 hours (2C-27C)

• T-Spot – Must Process within 8 hours of collection (32 hours if treated with T-cell Extend)
CDC Guidelines for the use of IGRA’s

TST or IGRA
- Contact Investigation
- Periodic Screening (ie Healthcare Workers)

IGRA Preferred Over TST
- Prior BCG
- Clients unlikely to return for reading at 48-72 hours
TST Preferred Over IGRA

- Children < 5 years old

IGRA and TST May Be Considered

- Improve Sensitivity
 - High risk individuals (contacts <5yo)
 - TB Suspects

- Improve Specificity
 - Low risk TST positive

- Improve Accuracy
 - TST when IGRA result borderline/high nil (or repeat IGRA)

- Improve Acceptance/Compliance
 - Foreign Born with prior BCG

Canadian Guidelines for Use of IGRA's

2008
Slide 40

- Similar to CDC Guidelines
- Do not endorse IGRA’s for Serial testing or Children < 18 (2008 Recs though)
- Suggest IGRA for confirmation of positive TST in low risk individuals including low risk contacts

Slide 41

Use of IGRA’s in Immunocompromised

- HIV – Correlates better with Risk Factors for LTBI than
 - Higher rate of “Indeterminate” results when CD4 < 100
- Immunosuppressive Rx –
 - TST-IGRA+ discordance with steroids
 - IGRA better assoc with TB Risks

Slide 42

Use of IGRA’s in Children

- Little performance data for children < 5
- Higher proportion of indeterminate results in those < 5 (usually low mitogen response)
- TST recommended for children < 5
Slide 43

Risk of TB with Negative IGRA

- Good negative predictive value – (100% TB contacts with TST positive and negative QFT) (1,2)
- No difference in predictive value in other studies (3)

Slide 44

Use of IGRA’s in Setting of Repeat Annual Testing

- IGRA better correlated to risk
- Lower number of IGRA+ than TST (except in high incidence settings)
- IGRA known to have slight variation on sequential testing with “reversions” to normal

Slide 45

Case Example

- 62 yo hospital transcriptionist
- TST neg since 2002
- No known TB exposure
- 2008 – QFT - Positive
 - 0.16 IU/ml
 - 0.67 IU/ml
 - 8.71 IU/ml
Slide 46

• TB Ag – Nil > 0.35 IU/ml (and that value > 25% Nil with appropriate controls) = Positive

Case Example

• TST negative
• Repeat QFT – 2 weeks – Negative
• Repeat QFT – 1 year - Negative

Cost Effective?

• Mori T, Harada N. Cost-effectiveness analysis of QuantiFERON TBM2nd generation used for detection of tuberculosis infection in contact investigations. Kekkaku 2005; 80: 675-86.