Outline:
- Why Capnography
- Review Airway Anatomy and Physiology
- Applied Physics
- Types of End Tidal CO2
- Using Capnography in the Field
- Overview of Equipment

Capnography 2009
- BLS Skill with placement of blind rescue airways
 - King LTD
 - Combitube
- Applies to any ventilated patient
 - Bag-mask
 - ETI and rescue airways
 - Transport vent
 - CPAP?
- Noninvasive applications

Capnography
- Defined as the monitoring of exhaled carbon dioxide through the respiratory cycle
- Measuring of End tidal CO2 is considered a standard of care for confirming endotracheal tube placement
- An important adjunct for assessing a critical patient

The Journey of A Molecule Through the Respiratory Cycle
Fundamental Comparison

Comparison Human and Gas Engines

- What do we need to do work (use energy)
 - Fuel (glucose or petroleum)
 - OXYGEN
 - Chemical process: (ignition)
- What do we give off? (Respiration)
 - Human: Carbon Dioxide
 - Engine: Carbon Monoxide

Anatomy Review

Action at the Alveoli

- **Oxygenation** of vital organs is the primary function of the respiratory system
- **Ventilation** is the movement of air/oxygen into the lungs
- **Perfusion** is the oxygenation of the cells through the alveoli
- **Gas exchange**: In with the good, out with the bad
 - Is the bad leaving?
- **Ventilation versus perfusion**: (V/Q)
 - Is what you are putting in getting to the cells?

Alveolar Detail

- O2 and CO2 exchange across semi-permeable membrane
- “Pressures” in blood stream and tissue affect quality of exchange
Normal V/Q Ratio

Alveolar Perfusion Problems
- **Shunt Problem**
 - Blocking of bronchial airways
 - Pneumonia, atelectasis
 - Right main stem intubation
 - Causes retention of CO2, increased levels
- **Dead Space Ventilation**
 - Capillary flow to alveoli impaired
 - Low Cardiac output, hypotension
 - Excessive PEEP
 - CO2 does not cross into the alveoli for exhalation
 - Decreased levels of expired CO2

Impaired Ventilation
- **Shunt Problem**

Dead Space Ventilation
- **Normal Respiration**
 - Oxygen diffuses into blood stream through the alveoli, and is transported to the cells.
 - Cells produce Carbon Dioxide as waste product
 - CO2 transport in venous blood to the capillaries of the alveoli, and diffuse across membrane into alveolar space and exhaled
Measuring End Tidal CO2

- Dalton’s Law:
 - Total pressure of a gas is the sum of the partial pressures of the gas
- Expired CO2 measured (PetCO2)
 - mmHg in waveform
 - Percentage
- Normal Levels
 - PaO2: 85-100mmHg
 - PaCO2: 35-45mmHg

Percentage vs. mmHg

- Relate to the air we breathe:
 - 78% Nitrogen
 - 21% Oxygen
 - 1% CO2 and other gases
- Exhaled gases:
 - 16% Oxygen
 - 4 to 5% CO2

PetCO2 vs. PaCO2

- PetCO2
 - End tidal measurement from expired or exhaled air
- PaCO2
 - Arterial blood gas sample
 - End tidal normally 2-5 mmHg lower than arterial

Comparing Arterial and End-tidal CO2

Review of Airway Confirmation

- Visualization
- Auscultation:
 - Negative Epigastric sounds
 - Equal lung sounds
- Esophageal detector
- End tidal CO2 detector
- Secondary signs: misting, increased SaO2

Types of End-Tidal CO2

- Qualitative
 - Yes or No
 - Nellcor, Portex, or built in to BVM
- Quantitative
 - Numerical value (capnogram)
 - Waveform (capnograph)
 - Mainstream or Sidestream
Capnometry vs. Capnography

- Capnometry is a numerical value only
- Capnography is a waveform, providing a visual representation of a ventilation
 - Provides the numerical value
 - Waveform indicates pattern of breathing
 - Quality of ventilation
 - Rate

Quality is Key

- Poor Perfusion or Poor Ventilation
 - Dramatic alternations in Homeostasis
- Poor Cardiac Output
 - Equals Poor Perfusion
 - Decreased Carbon Dioxide
- Pearl of Wisdom
 - "In with good air, out with bad"
 - "Blood goes round and round"

Qualitative Detectors

- Detect presence or absence of CO2, but do NOT give specific values or levels
- Colorimetric
 - pH sensitive paper
 - Color changes with CO2 exposure
- Limited value once contaminated with moisture, drugs, or body fluids
- Most common: Nellcor EasyCap II, Portex CO2 clip

Quantitative Detectors

- Electronic, infra-red analyzers
- Use IR absorption spectrophotometry
 - Certain gases will Absorb IR light
- Mainstream
 - IR detector in line, at end of ETT, "real time"
- Sidestream
 - IR detector in machine, attached by tubing
 - Intubated and non-intubated
 - 3-5 second time delay

Capnography Monitors

- Wide variety: evolving as devices change
- Oridion supports Microstream
 - Sidestream devices, pulling gases into device
- Respironics/Novametrix supports Zoll, Propaq
 - Mainstream

Sample Capnography Display
Sidestream
- Sensor is located in device like LP12
- Adapter tube attaches to ETI
- Pump in machine pulls air in for measurement
 - 100 to 150 ml air in early devices
 - 50 ml in Microstream
- Concerns:
 - Delay of 3-5 seconds
 - Quality of sample

Mainstream Detector
- Sensor at end of cable
 - Disposable adapter to ET tube
- "Real time" values-best for critical care
 - As the gas passes the IR sensor
- Concerns:
 - Not easily adapted to non-intubated patient
 - Can be heavy for pediatric of infant ET tubes
 - Cable is expensive

Sidestream
- Easier to use non-invasively
- Key is quality of the patient's respirations
 - Shallow is poor
 - Mouth breathing is challenging
 - Newer devices assist in increasing accuracy
- Sidestream is LESS specific because of its engineering

Side-stream Detector
- Cannula with mouth scoop
- Oxygen and sensor

Mainstream Detector
- Easier to use non-invasively
- Key is quality of the patient's respirations
 - Shallow is poor
 - Mouth breathing is challenging
 - Newer devices assist in increasing accuracy
- Sidestream is LESS specific because of its engineering

Sidestream
- Easier to use non-invasively
- Key is quality of the patient's respirations
 - Shallow is poor
 - Mouth breathing is challenging
 - Newer devices assist in increasing accuracy
- Sidestream is LESS specific because of its engineering
Lifepak 12
- Monitor/12 lead
- Configures for critical care monitoring
- Defib/pacemaker
- Capnography
 - Sidestream
 - Microstream
- Downloadable, stores 100 activations

Propaq Critical Care Monitor
- Vital signs only
- Capnography
 - Mainstream
- Critical care central line monitoring
- Collects and prints trends
- DOES NOT STORE DATA

Zoll M and E series
- EMS and Critical Care
- Capnography
 - Mainstream and sidestream
 - Depends on model
 - Respironics/Novametrix technology
- Data collection

Tidal Wave/Respironics
- Hand held
- Combined Pulse Oximeter and Capnography
- Downloadable

Nellcor N85
- Handheld
- Combined Pulse Oximeter and Capnography
Normal EtCO2 waveform

Exhalation: Rapid Rise
Plateau: between breaths
Baseline: no CO2 detected
Ventilation: Return to baseline

Parts of the Waveform
- Baseline: no CO2 is passing the sensor
 - Inhalation/ventilation by BVM
- Up slope: rapid rise in CO2 level
 - Exhalation/relaxation of BVM
- Plateau: rest at end of exhalation
 - May have a gradual rise at end
- Down slope: rapid decrease as inhalation occurs

EMS Applications
- Confirmation of airway placement
 - Endotracheal tube (CO2 present)
 - Gastric tube (no CO2 present)
- Quality of Cardiopulmonary Resuscitation
 - Tube confirmed, but CO2 levels remain low
 - Poor cardiac output leads to lower PetCO2
- Clinical Conditions require the use of trend data and constant minute volumes

Pathology Associated Capnography
- Oxygen and Carbon Dioxide
 - What do the numbers mean
- Hypoventilation:
 - O2 < 60mm/Hg
 - CO2 > 45mm/Hg (Hypercapnea)
- Hyperventilation:
 - O2 > 100mm/Hg (SaO2 above 98%)
 - CO2 < 35mm/Hg

Clinical Conditions with Increased CO2
- Increased CO2 production
 - Bicarbonate administration, fever, seizures, sepsis, thyroid storm
- Decreased alveolar ventilation
 - COPD (retaining CO2), hypoventilation, muscular paralysis, respiratory depression
- Equipment Problem
 - Rebreathing, ventilator leak

Hypoventilation
Gradual increase in CO2 levels, often from retention or V/Q mis-match
Hypercapnea

Increased CO2 levels with normal waveform

Comparing Waveforms

Normal

Hypercapnea

Clinical Conditions with Decreased CO2

- Decreased CO2 production
 - Cardiac arrest, hypotension, hypothermia, pulmonary emboli, pulmonary hypoperfusion
- Increased alveolar ventilation
 - Hyperventilation
- Equipment Problems
 - Airway obstruction, esophageal intubation, ETT leak, incomplete exhalation, poor sampling, ventilator disconnect

Comparing Waveforms

Normal

Hypocapnea

Hyperventilation
Bronchospasm/Asthma

Air is “forced” out during exhalation, resulting in an up slope.

Ripple-CO2 waveform

Occurs during CPR or other types of chest movement.

Curare Cleft

Intubated Patient with Spontaneous Respiration

Breathing Against Ventilation

Rebreathing
Esophageal Intubation

![Graph 1: CO2 vs Time](image1.png)

Graph 1: After extended Bag-valve-mask ventilation

Graph 2: CO2

Graph 2:

Procedure

- Perform standard interventions per protocol for managing Airway, Breathing, and Circulation
- Prepare intubation equipment including end tidal CO2 detector
- Depending on device, the electronic capnograms may need to cycle or warm up

Device Placement

- Place per protocol
 - Endotracheal Tube
 - Combitube
 - King LT airway
- Inflate distal cuff, attach BVM
- Auscultate for Lung sounds
 - 3 quick, shallow ventilations – more distinct
 - Abdomen first, then opposing sides of chest

Colormetric/Qualitative

- Place between Bag-valve and airway
- Perform 6 quality ventilations
 - 1 ventilation per 5-6 seconds
 - Full, consistent depth
- Observe for color change from purple (No CO2 present) to yellow (CO2 present)
 - YEAH for YELLOW
- Purple <4mmHg, Tan 4 to <15mmHg, Yellow 15 to 38 mmHg
- Replace after 2 hours or exposure to fluids

Colormetric Detectors

- Nellcor Easy Cap II
- Porttex CO2 clip
Basic Operations

- Connect sensor to activate mode in monitor
- Place sensor between ETT and Bag-valve
- Perform quality ventilations
- May take 15-30 second for detector to initialize
- Observe for waveform
- Discard if tubing becomes obstructed

Sidestream Attachment

- LP12 port

LP12 CO2 Display

- Offers waveform with slight delay
- Very susceptible to ventilation style
 - Bad pattern or rhythm gives choppy display
- Scale measured one right side of screen
 - Autoscale: adjusts to waveform
 - Range: 0 to 50mmHg, or 0 to 100mmHg
- Display also gives respiratory/ventilatory rate

LP12 Capnography Display

- Provides a guideline
 - Educate your crews on technique
- Rate:
 - Too fast = End Tidal Drops
 - Too slow = End Tidal Rises
- Volume:
 - Too much = End Tidal Drops
 - Not enough = End Tidal Rises

Common Problems

- Machine needs to warm up
- Screen glare difficult to interpret
- Sensor adapters can clog with debris, moisture
- Sidestream requires air movement: pulls air into device

Ventilation and Capnography
Scenario 1
- 52 year old cardiac arrest-witnessed
- AED, CPR, BLS prior to ALS arrival
- Advanced Airway placement as appropriate for protocol
- Continued ventricular fibrillation, medications per ACLS guidelines

Scenario 1
- Is the airway adequate? Correctly placed?
- What guidance can the AIC offer to the ventilator?
- The chest compressors?
- After 4 defibrillations, a PEA rhythm results:

Scenario 1
- What has happened?
- What considerations for the resuscitation team?

CO2 Trend During Cardiac Arrest
Scenario 2
- 65 year old obese trauma patient
- Predicted Difficult Intubation
- Multiple Injuries
 - Chest Contusions
 - Abdominal Distention
 - Fractures of right upper leg, left lower leg, and right arm
- Complains of Respiratory Distress

Scenario 2
- Initial Et CO2 6-7mm/Hg
- Intermittent sensor detection of numerical value
- Waveform present
- Low “shark fin” appearance
- What is going on?
- Is the ET good?

Scenario 2

Scenario 3
- 45 year old respiratory arrest
- Progressive dyspnea, fever for two days prior, found down in bed by family
- EMS arrives; unable to ventilate through clenched teeth
 - RSI medications administered
 - Oral ETI attempts times two unsuccessful
- King LT airway placed

Scenario 3

Data Collection Capability
- Limited Number of Devices
- Software support
- Type of data:
 - Snap shot: LP12
 - Continuous: Tidal wave
- How do you evaluate?
Data Evaluation

- Benchmarks of Procedure
 - Correlate PCR times and machine
- Trend data: single point is often not useful
- Alarms:
 - Decrease SaO2 waveform after intubation
 - Pulse Oximeter correlation with EtCO2
 - Pre intubation SaO2

Future

- Integrated data systems
 - Ability to collect over long transports
- Military evacuations have identified need for an improved, comprehensive physiological monitor

A busy, but stabilized patient

![Image of a stabilised patient](Courtesy of the simulator mode on the machine)

Capnography Summary

- Required for documentation of Endotracheal Intubation
- Adjunct for Monitoring the quality of ventilations
- Fundamental Understanding of Principles offers:
 - Increased awareness of potential problems
 - Enhances scope and quality of pre-hospital practice

Sign of a Problem??

![Graph showing CO2 levels over time](CO2 Graph)

ANY QUESTIONS???
Sources

- “Capnography: Beyond the Numbers” by Carol Rhodes, RN, and Frank Thomas, MD, MBA; Air Medical Journal, March-April 2002, Volume 21(2) p. 43-48, Mosby Publishing
- Web site: www.capnography.com

Sources:

 http://www.asahq.org/publicationsAndServices/sgstoc.htm
- Web site: www.capnography.com

ANY QUESTIONS??