Objectives

- Understand lightning and electrical injury presentation in various settings
- Review the behavior of electricity and its victims
- Discuss the mechanism and patterns of injury associated with different types of electrical injury
- Review triage, treatment, and management pitfalls of electrical injury
Rate of Injury

- Electrical injury accounts for 1000 deaths annually in the US
 - No reporting requirement for electrocution
 - Severe reporting bias

- Lightning deaths estimated at 50 to 300 deaths annually in the US
 - Non-fatal strike rate likely 4-5 times higher
Age relevance

- **Children:**
 - Floor/receptacle level, explore with mouth/fingers/shape sorting activities
- **Adolescents/Teens/Early Adulthood:**
 - Risk taking behavior, chemical impairment
- **Adults:**
 - Occupational risk, outdoor activities
Electricity in the US

- War between currents:
 - AC: Westinghouse
 - DC: Edison

- 1880s:
 - Samuel W. Smith staggers onto AC (first death in US)
 - Edison’s associate develops electric chair
 - Adopted as humane alternative to hanging
 - Kemmeler first execution by chair- ‘better with an axe’
Physics: a Review

- **Current: AC vs. DC**
 - AC three times more lethal than DC
 - Spasm vs. tetany
 - Entry/exit vs. source contact/ground contact

- **Resistance: resists flow of electricity**
 - Moisture content and physical properties
 - Higher resistance creates more heat
 - Bone, tendon, fat >> muscle, vessels, nerves
 - Skin varies with sweat/moisture, callous, etc.
Physics: a Review

- **Amperage**: amount of energy that flows through an object
 - True measure of lethality
 - Responsible for heat generation
 - Nearly impossible to predict accurately

- **Voltage**: measure of potential between two points
 - Think of it as potential energy
Physics: a Review

- **Duration of contact:**
 - Similar to impulse
 - Time that current flows through tissues
 - Longer is worse

- **Pathway:**
 - “Path of least resistance”
 - Resistance increases as coagulation and carbonization occurs—pathway changes
Physics: a Review

- **Lightning:**
 - Properties of both AC and DC and neither
 - Single, unidirectional discharge of a massive current impulse
 - We frankly do not understand the complete physical properties and physiologic effects of lightning strikes yet!
 - Prevailing theory:
 - “Negative leader and positive streamer”
Formulas for Injury

- **Ohm’s Law**
 - \[I = \frac{V}{R} \]
 - Current (Amps) = \(\text{Potential (Volts) / Resistance (Ohms)} \)

- **Joule’s Law**
 - \[P = I^2Rt \]
 - Heat (Joules) = \(\text{Current (Amps)}^2 \times \text{Resistance (Ohms)} \times \text{Time (sec)} \)
Tissue as a conductor

<table>
<thead>
<tr>
<th>TISSUE</th>
<th>RESISTANCE (Ω/CM²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mucous membranes</td>
<td>100</td>
</tr>
<tr>
<td>Vascular areas</td>
<td></td>
</tr>
<tr>
<td>Volar arm, inner thigh</td>
<td>300–10,000</td>
</tr>
<tr>
<td>Wet skin</td>
<td></td>
</tr>
<tr>
<td>Bathtub</td>
<td>1,200–1,500</td>
</tr>
<tr>
<td>Sweat</td>
<td>2,500</td>
</tr>
<tr>
<td>Other skin</td>
<td>10,000–40,000</td>
</tr>
<tr>
<td>Sole of foot</td>
<td>100,000–200,000</td>
</tr>
<tr>
<td>Heavily calloused palm</td>
<td>1–2 million</td>
</tr>
</tbody>
</table>
Effect of Amperage (@60Hz)

<table>
<thead>
<tr>
<th>PHYSICAL EFFECT</th>
<th>CURRENT (mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tingling sensation</td>
<td>1–4</td>
</tr>
<tr>
<td>Let-go current</td>
<td></td>
</tr>
<tr>
<td>Children</td>
<td>4</td>
</tr>
<tr>
<td>Women</td>
<td>7</td>
</tr>
<tr>
<td>Men</td>
<td>9</td>
</tr>
<tr>
<td>Freezing to circuit</td>
<td>10–20</td>
</tr>
<tr>
<td>Respiratory arrest from thoracic muscle tetany</td>
<td>20–50</td>
</tr>
<tr>
<td>Ventricular fibrillation</td>
<td>60–120</td>
</tr>
</tbody>
</table>
People as circuits

1 second exposure to 120V:

- Mucous Membrane (100 Ohm)
 - 1.2 Amps
 - 144 Joules
- Volar Arm (300)
 - 0.4 Amps
 - 48 Joules
- Calloused Skin (1 M)
 - 0.00012 Amps
 - 0.0144 Joules
People as circuits

- 1 second exposure to 110kV:
 - Volar Arm (300)
 - 367 Amps
 - 40,000+ kJoules
 - Calloused Skin (1 M)
 - 9 Amps
 - 82,000+ kJoules
Electrical Injury

- Electrothermal heating is a result of current passing through the victim.
- Other tissue burns can occur from:
 - Arcing: 2500° C
 - Flames from ignited clothing
 - Flash from current dispersing over skin
Injury Patterns

- Head and Neck:
 - Common point of entry
 - Cataracts in 6%
 - Initially present or delayed up to several months
 - Oral lesions
 - Infant/toddler concern
 - Delayed bleeding
 - Head and Cervical Spine Injury
 - Falls and being thrown from source
Injury Patterns

- Cardiovascular
 - Cardiac Arrest
 - V-fib or asystole
 - EKG changes
 - Tachycardia, ST elevation, QT prolongation
 - PVC, A-fib, Bundle branch blocks
 - Vascular injury
 - Temporary spasm, thrombosis, delayed rupture
22 yo male farmer after brief contact with 240V electrical source.
Injury Patterns

- Neurologic
 - Neuronal loss of conductivity
 - Brain is commonly injured:
 - Loss of consciousness, disruption of respiratory center
 - Peripheral nerves may suffer immediate myelin sheath injury or delayed dysfunction from edema or compartment syndrome
 - Paralysis, neuropathy
Injury Patterns

- Musculoskeletal
 - Spasm or tetany
 - Loss of muscles of respiration
 - Ischemia from vascular injury
 - Muscle necrosis
 - Compartment syndrome
 - Fractures and dislocation
 - Spasm or from secondary trauma
Injury Patterns

- Skin
 - Most severe at source and ground contact points
 - Common sites are head/hands and feet
 - Kissing burns along flexor creases
 - Usually full thickness, appearing gray with central necrosis
 - NOT predictive of underlying tissue damage
Little on Lightning

- Temperature “hotter than the surface of the sun”
 - AC arc 2500° C
- 100 million volts
- 100 strikes per second worldwide
- 50 strikes per square mile in the US every year
- No reported death in VA since 2009
- 12 yo male, ballfield, Fredericksburg
Lightning Strike Prevention

- **Stay indoors**
 - Open shelters are not as safe

- **If caught outside**
 - Avoid trees, partial shelter
 - Safer in low lying area/ditch in crouched position

- **Wait 30 minutes after thunder or lightning ends**
Lightning Strikes

- Direct Strike
- Contact: Victim touching struck object
- Side Flash/Splash: Jumps to victim from struck object
- Step voltage: Both feet on ground where current dissipating
Additional Injury Patterns

- Head and Neck
 - Direct strikes may enter orifices
 - Tympanic rupture is common
 - Ossicle chain or mastoid disruption
 - Permanent hearing loss possible
 - Myriad of eye injuries
 - Dilated pupil does not predict death
Additional Injury Patterns

- **Cardiovascular**
 - Arrest with asystole more common
 - Cardiac enzymes often elevated
 - Hypertension

- **Neurologic**
 - Keraunoparalysis
 - LOC, confusion, anterograde amnesia
 - Peripheral neuropathy +/- atrophy
Additional Injury Patterns

- **Skin**
 - Deep burns in less than 5%
 - Thermal burns
 - Sweat lines from steam production
 - Additional burns if clothing ignites
 - Lichtenburg figures (feathering)
 - Electron shower passing over external skin
Prehospital Management

- Secure the scene
 - Prevent additional victims
 - Look out for “number one”
 - Ensure power sources removed
 - “Not my job!”
 - Lightning CAN (and does) strike twice
 - Vehicle safest refuge (Faraday cage)
 - Squatting onto balls of feet safest position if lightning eminent
Prehospital Management

- Triage Considerations
 - Potential for multiple victims
 - Change of routine triage
 - Those without spontaneous respiration or pulse should be treated first
Initial Resuscitation

- Combination of Cardiac and Trauma Care
 - ACLS and ATLS/ITLS apply
 - Treat similarly to crush injury as TBSA will likely underestimate total tissue damage
 - 20 ml/kg IVF bolus for hypotension and guide further fluid administration by vital signs and clinical status
Continued Management

- History of electrical source and duration
- Fluid administration
 - Guided by urine output
 - 0.5-1.0 ml/kg/hr if *no* heme present
 - 1.0-1.5 ml/kg/hr if heme present
- EKG and cardiac monitoring
 - High voltage exposure
 - Any cardiopulmonary complaint
Continued Management

- **Head CT**
 - Initial AMS or any change in MS during care

- **Labs**
 - CBC, Chem Panel, UA
 - Evaluate for myoglobinuria and rhabdomyolysis

- **Tetanus status**
 - Wounds are tetanus prone
Disposition

- **Burn Center Transfer**
 - Burns meeting ABA/ACS criteria
 - High voltage/Lightning injury

- **Admission**
 - Cardiac arrest, dysrhythmia, abnl EKG
 - Hx of cardiac disease or high risk
 - LOC, Chest pain, Hypoxia
 - Conductive injury or other severe injury
Summary

- Physics of electrical conduction dictate injury, but difficult to predict based on history or skin exam.

- Burn injury is often greatest at source and ground contacts. Underlying injury must be investigated.

- Common lightning presentations are often transient. Triage must focus on those in cardiovascular collapse.
Thank You

jeffrey.ferguson@vcuhealth.org