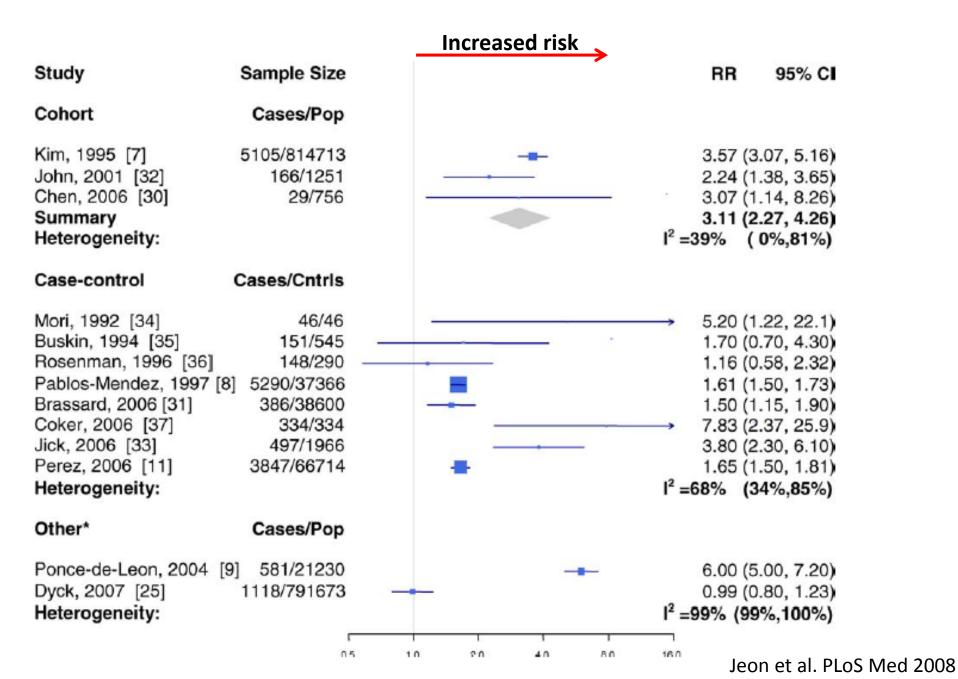
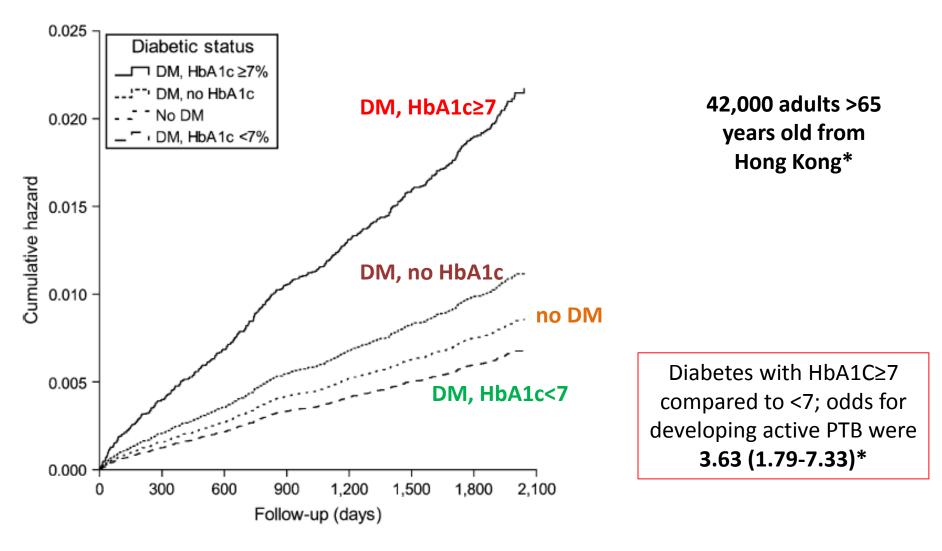

Diabetes related TB and a primer on Therapeutic Drug Monitoring

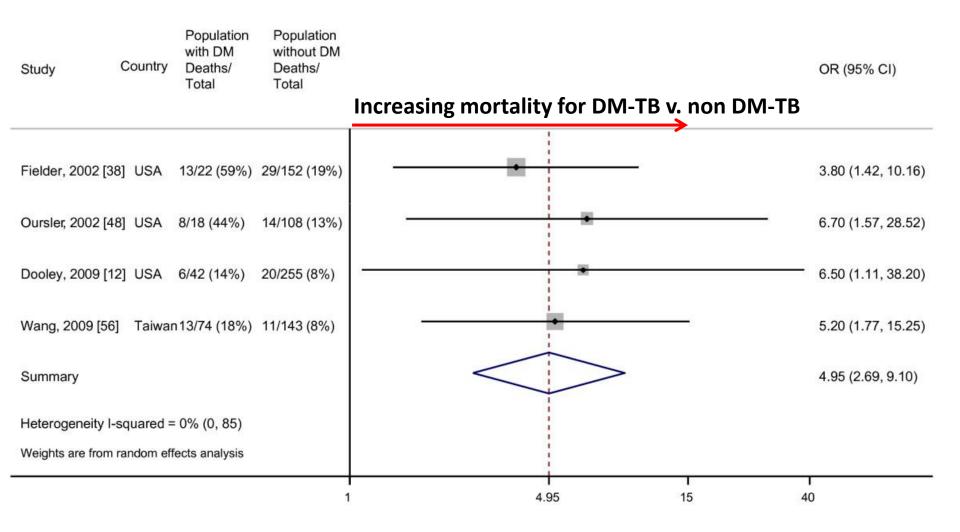


Scott Heysell, MD, MPH Associate Professor of Medicine Infectious Diseases, International Health



- Overview of diabetes (DM) and tuberculosis (TB) interaction
- Local case study
- Pathophysiology
- Global case study: Dhaka, Bangladesh
- The case for metformin
- ■What we are doing in **Virginia**→
- -screening for DM in TB patients (hemoglobin A1c)
- -linkage to DM care (metformin)
- -early therapeutic drug monitoring
- -patient/provider education (DM-TB flipchart)
- -future study of therapeutic drug monitoring from urine

Diabetes is consistently a risk factor for developing active TB



Severity of diabetes increases the risk for TB

1. Pablos-Mendez et al. *Am J Pub Health* 1997 *2. Leung et al. *Am J Epi* 2008

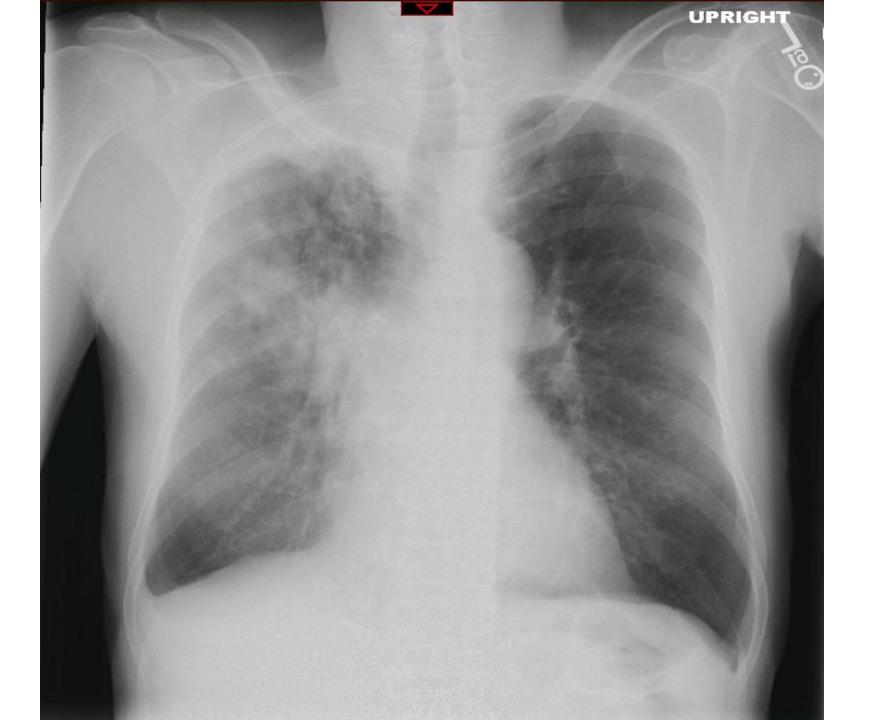
All cause mortality increased in diabetics during TB treatment (compared to non-diabetics)

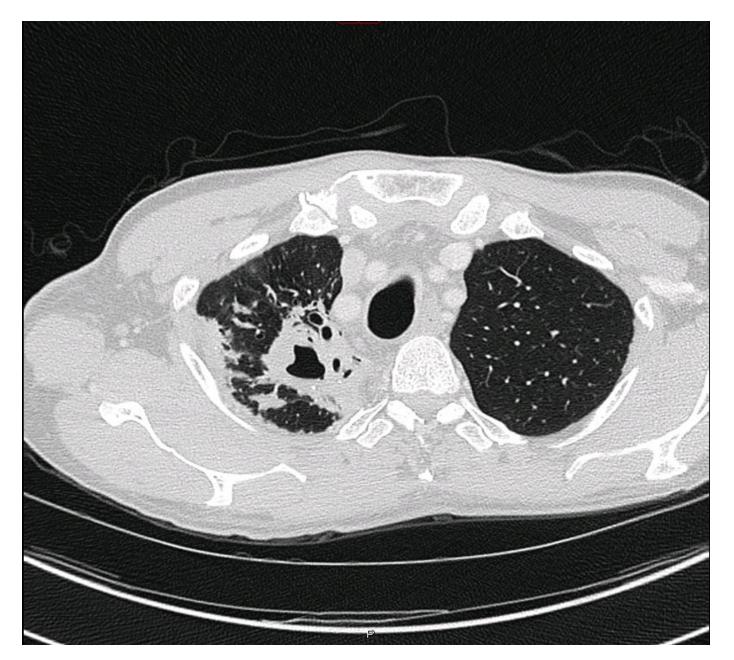
Baker et al. BMC Med 2011

A local case

70 year-old man was admitted to UVA this month with 2 weeks of fever

ROS also elicits a **chronic cough** (which was not the patient's primary complaint) and he notices a foreign body sensation in his **throat** for months

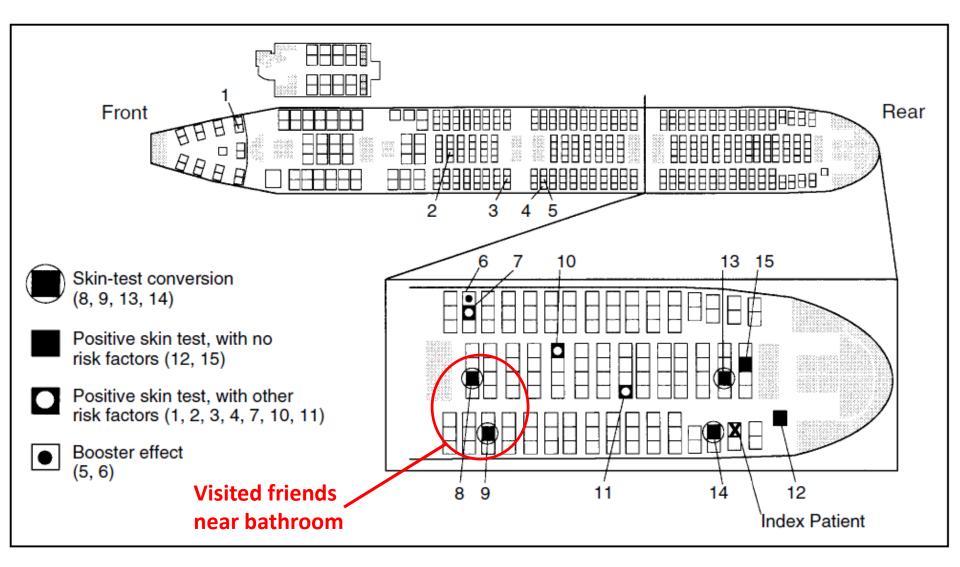

Fever wakes him at night, though does not soak the bed sheets, and accompanied by significant malaise. He notes 6-7 kg **weight loss** over the past 3 months.


Now it gets even more interesting...

Patient is originally from Ghana and returned last week following a 6 month visit. In Ghana he was treated with an anti-malarial that did not help his cough or his fever. He denies known TB contacts.

He is HIV negative, but has a known history of HTN, BPH and **Type II Diabetes** (on oral medications— not regular fingerstick monitoring while in Ghana)

While sick, he boards an international flight for Charlottesville


Multiple sputum specimens 2-3+ AFB smear pos

M. tuberculosis complex (Xpert)

Remainder of susceptibilities pending

Defervesced on INH, RIF, EMB, PZA

1994: MDR-TB patient flew 747 from Honolulu \rightarrow Chicago \rightarrow Baltimore

925 contacts, 802 responded to survey: 11 skin test conversions \rightarrow more likely on the longer flight and proximity to index patient

Kenyon et al. NEJM 1996

The New England Journal of Medicine

VOLUME 210

JANUARY 4, 1934

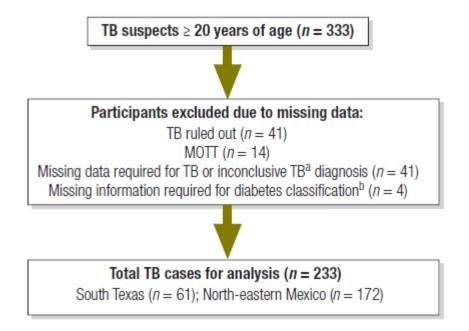
NUMBER 1

THE ASSOCIATION OF DIABETES AND TUBERCULOSIS*

Epidemiology, Pathology, Treatment and Prognosis

BY HOWARD F. ROOT, M.D.

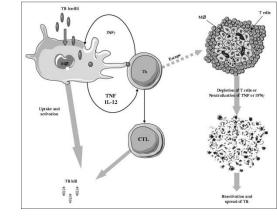
(a) The development of pulmonary tuberculosis in juvenile diabetics occurred more than ten times as frequently as among non-diabetic Massachusetts grade and high school children.


(b) Pulmonary tuberculosis developed in 8per cent of diabetic patients within three years of recovery from coma.

(c) The incidence of pulmonary tuberculosis in adult diabetics is increasing despite the general decrease of tuberculosis mortality with consequent reduction of contacts in the community. TB more frequent in those with poor diabetes control

No "special insidiousness" of signs and symptoms in the "tuberculous diabetic"

Not explained by familial contact, occupation, race, poverty or alcoholism


Attributable risk of TB from Diabetes > HIV in Texas/Mexico border

Age (years)		Diabetes		l H		
-	RR (95% CI)	AR _{exposed} (%) ^a	AR _{population} (%) ^b	RR (95% CI)	AR _{exposed} (%) ^a	AR _{population} (%) ^b
South Texas						
20+ (<i>n</i> =61)	2.7 (1.6-4.4)	63	26	17.8 (6.5–9.0)	94	5
20-34 (n=20)	0.9 (0.1-6.8)	_9	1	34.4 (8.0–147.7)	97	6
35-64 (n=32)	5.1 (2.6-10.2)	80	48	12.2 (2.9-50.9)	92	5
65+(n=9)	1.7 (0.5-5.8)	41	22	0°	NA	NA
NE Mexico						
20+ (n=172)	3.1 (2.3-4.2)	68	24	16.0 (7.5–34.0)	94	3

Restrepo et al. Bull WHO 2011

Diabetes alters phagocyte chemotaxis, activation and antigen presentation in presence of *M. tuberculosis*

Monocytes from diabetic patients have impaired chemotaxis that does not improve with insulin¹

Mice with streptozotocin induced diabetes, macrophages had 1/10 of phagocytic activation, despite similar in vitro killing \rightarrow 90% died after *M. tuberculosis* challenge, compared to only 10% of non-diabetic mice²

In TB patients, alveolar macrophages are less activated and produce less hydrogen peroxide in diabetics compared to non-diabetics³

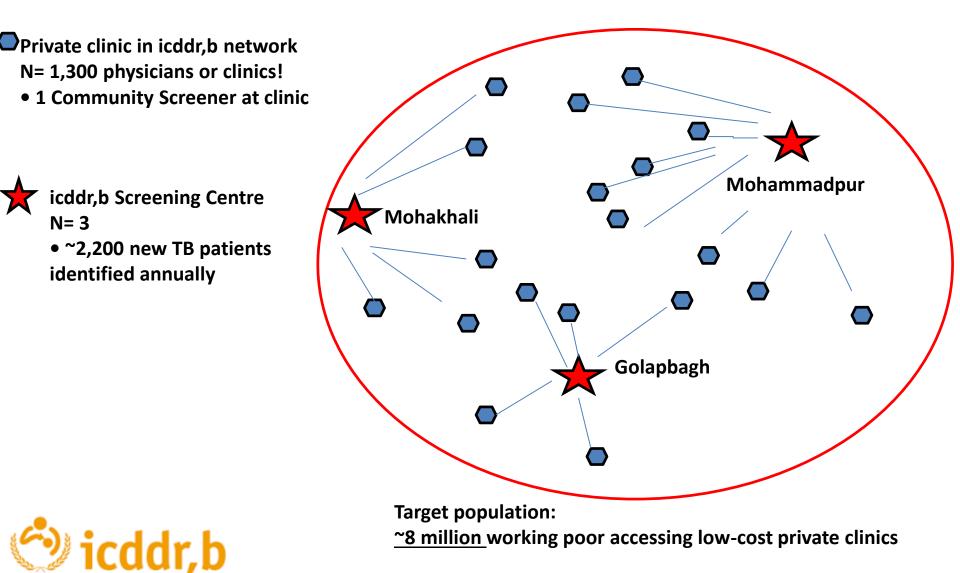
Insulin deficiency causes impaired Fc receptor internalization and rats that have been pancreatectomised have deficient Fc-mediated phagocytosis^{4,5}

1. Moutschen et al. *Diab Metab* 1992 2. Saiki et al. *Infect Immun* 1980

- 3. Wang et al. Tuberc Lung Dis 1999
- 4. Abbras. Clin Immunol Immunopath 1991
 - 5. Chang et al. Diab Res Clin Pract 1995

Global case study: The city of Dhaka, Bangladesh

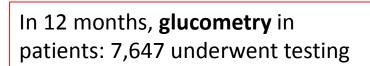
~18.8 million people in Dhaka


 1/3 of all diabetics living in 48 lowest income countries in the world, are from Bangladesh

A typical morning commute

Dhaka Tribune, 2014

Screening Centre network of private clinics/ providers in Dhaka



Purposeful architecture of Screening Centre

Waiting area with high air exchange

CAD4 chest x-ray: automatic TB score

832/ 6443 (12.8%) with diabetes among those with **negative Xpert** MTB/RIF

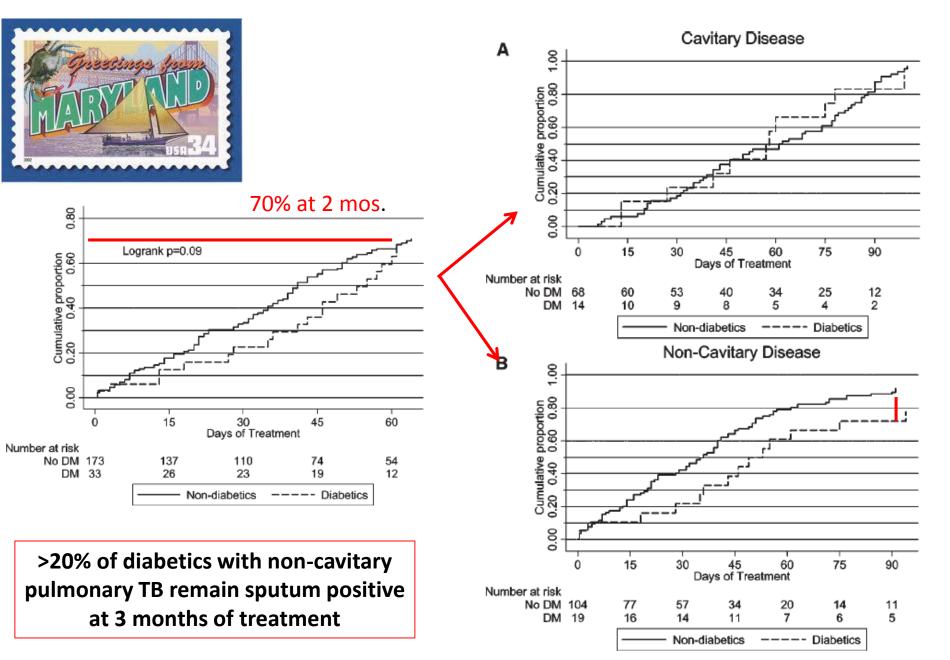
252/ 1204 (20.9%) with diabetes among those with **positive Xpert** MTB/RIF

courtesy Sayera Banu

Diabetics in Indonesia more likely culture positive at 6 months of treatment (22%)

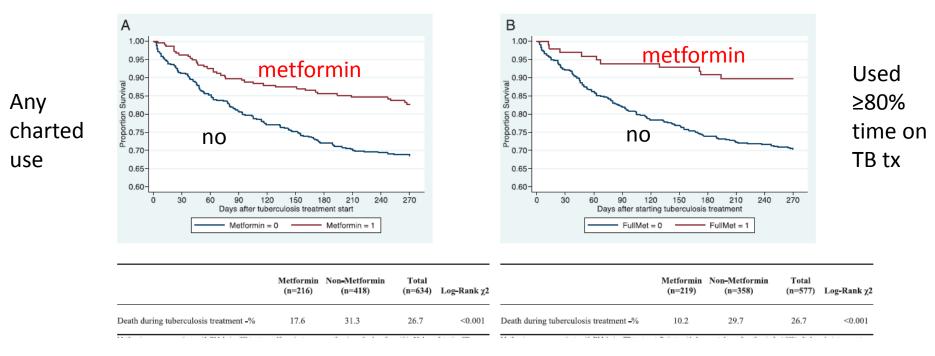
Table 3. Treatment response and outcome of patients with tuberculosis (TB) with and without diabetes mellitus (DM).

		of patients th TB		
Period, variable	With DM $(n = 94)$	Without DM $(n = 540)$	Crude OR (95% CI)	Adjusted OR (95% CI)
Intensive phase				
AFB negative ^a	67 (71.3)	455 (84.3)		
AFB positive	17 (18.1)	54 (10.0)	2.14 (1.17-3.9)	1.90 (0.82-4.42)
No sputum sample available, hospital transfer, and/or study default	8 (8.5)	31 (5.7)		
Death	2 (2.1)	0 (0)		
Culture result positive for Mycobacterium tuberculosis	7/41 (17.1)	68/372 (18.3)	0.92 (0.39–2.16)	0.90 (0.30-2.68)
End of treatment				
AFB negative ^a	70 (74.5)	435 (80.6)		
AFB positive	4 (4.3)	17 (3.1)	1.46 (0.48–4.47)	1.06 (0.17-6.60)
No sputum sample available, hospital transfer, and or study default	18 (19.1)	88 (16.3)		
Death	2 (2.1)	0 (0)		
Culture result positive for <i>M. tuberculosis</i> ^b	6/27 (22.2)	32/333 (9.6)	2.69 (1.01–7.14)	7.65 (1.89–30.95)


NOTE. The intensive phase was the first 2 months of treatment, and end of treatment was at 6 months. AFB, acid-fast bacilli.

•14.8% prevalence of undiagnosed DM in new TB patients

• TB-DM had greater symptoms at time of diagnosis

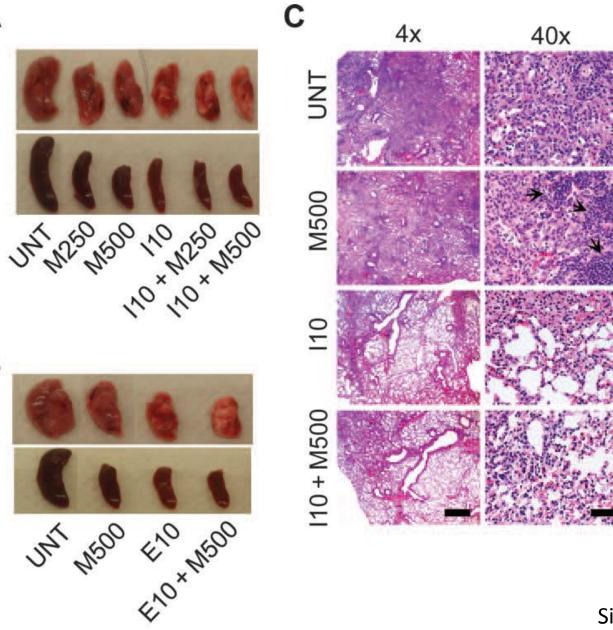

Alisjahbana et al. Clin Infect Dis 2007

Slower culture conversion in diabetics (without cavitary disease)

Dooley et al. Am J Trop Med Hyg 2009

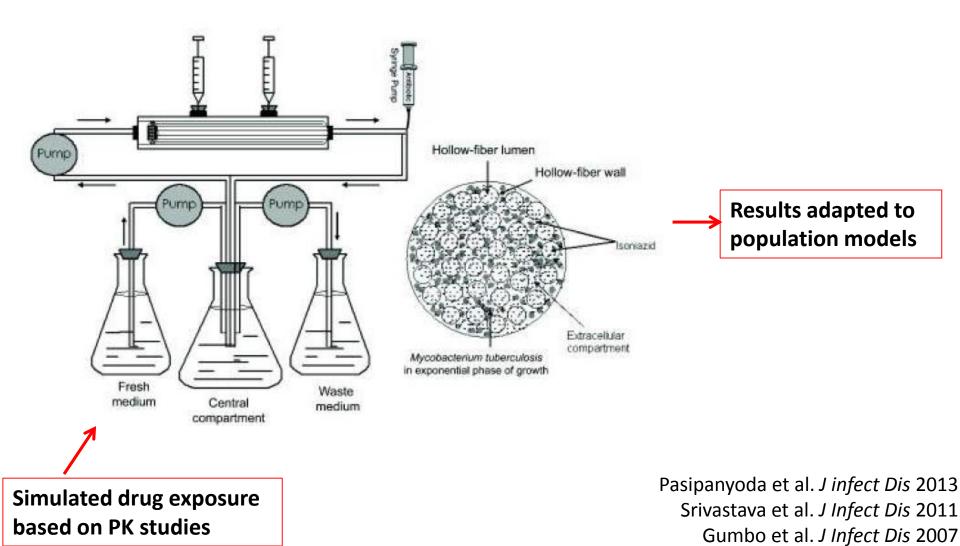
Metformin may *reverse* the trends in increased mortality among TB/diabetes

Table 3. Crude and Adjusted Odds Ratios, Based on a Logistic Regression Model, of 2-Month Sputum Culture Positivity for *Mycobacterium tuberculosis* (n = 1323)


Characteristic	Crude OR	(95% CI)	<i>P</i> Value	Adjusted OR ^a	(95% CI)	<i>P</i> Value
Type 2 diabetes mellitus	1.89	(1.40–2.55)	<.001	1.72	(1.25–2.38)	.001
Age	1.00	(1.00–1.01)	.510	1.00	(.99–1.01)	.693
Male	1.52	(1.10-2.10)	.012	1.43	(.98–2.08)	.062
Chronic kidney disease	1.14	(.77–1.69)	.510	1.07	(.70–1.65)	.751
Cancer	0.90	(.61–1.34)	.612	0.78	(.51–1.18)	.242
Hepatitis C virus	1.55	(.72-3.33)	.258	1.40	(.63–3.13)	.410
History of tobacco use	1.42	(1.06–1.91)	.020	1.05	(.75–1.48)	.762
Cavitary disease	4.04	(2.90–5.65)	<.001	4.03	(2.84–5.71)	<.001
Poor TB treatment adherence	1.06	(.72–1.57)	.764	1.16	(.77–1.75)	.490

Denger et al, Clin Infect Dis 2018

Metformin reduces TB directed tissue pathology and enhances immune response


Α

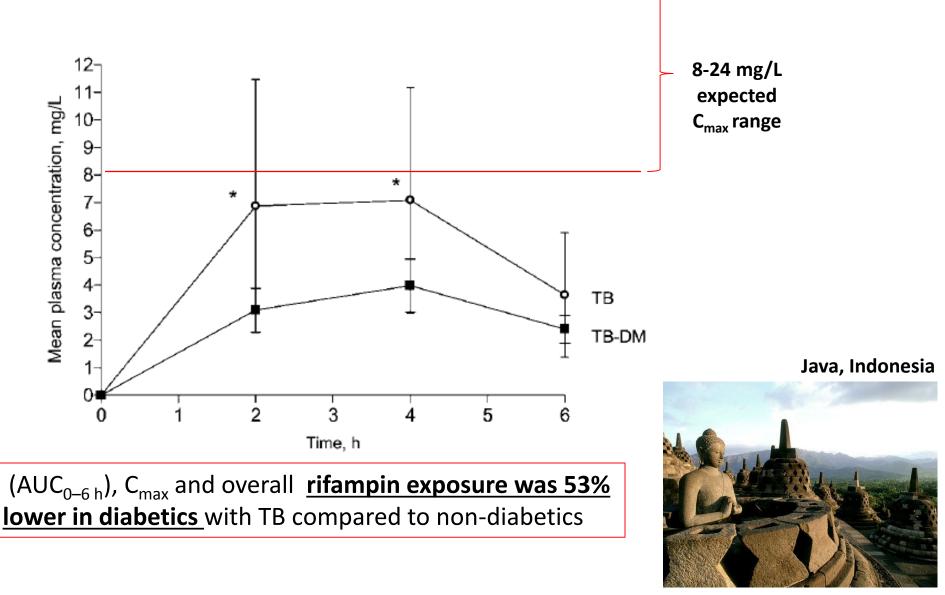
В

Singhal et al, Sci Transl Med 2014

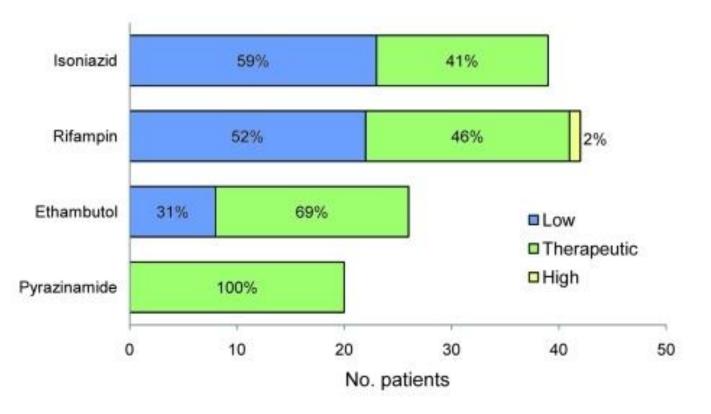
Intra-patient pharmacokinetic variability (not non-adherence) predicts response and acquired resistance on anti-TB therapy

Determinants of anti-TB drug pharmacokinetics:

- 1. mg/kg dosing (weight categories)
- 2. poor availability of drug in fixed-dose combinations in some settings or inaccurate quantity of active drug in pill
- 3. Adherence
- 4. Age
- 5. Gender
- 6. Genetic polymorphism of gut xenobiotic transport
- 7. Drug interactions
- 8. Malabsorption

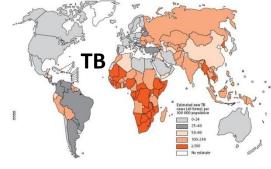


9. Poor solubility


1. Ashokraj et al. Clin Res Reg Affairs 2008

Rifampin exposure significantly reduced in diabetics from Indonesia

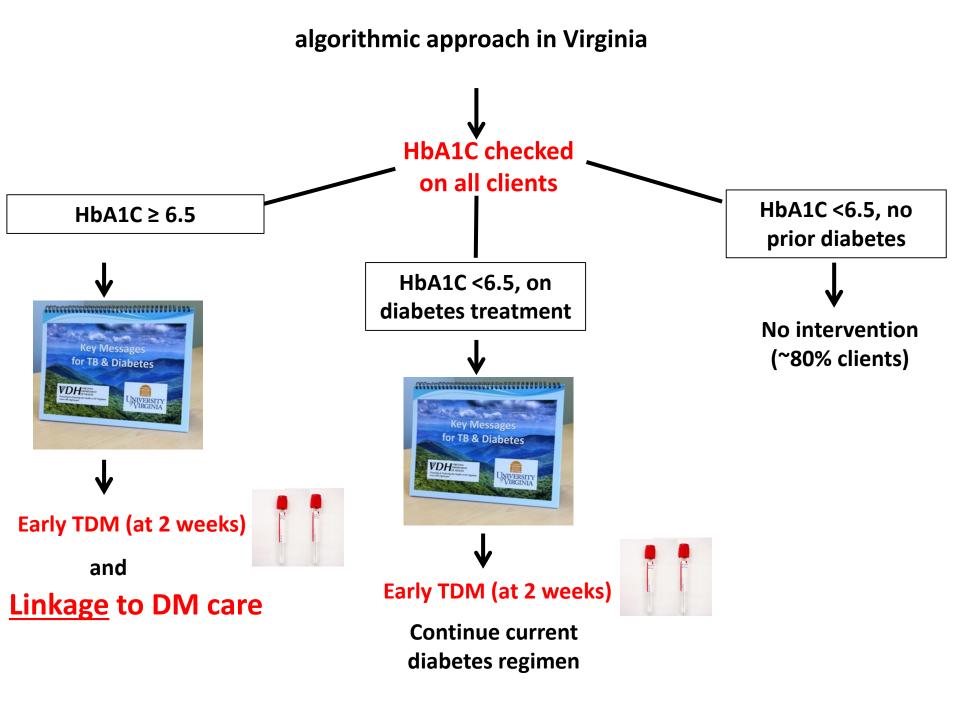
Nijland et al. Clin Infect Dis 2006



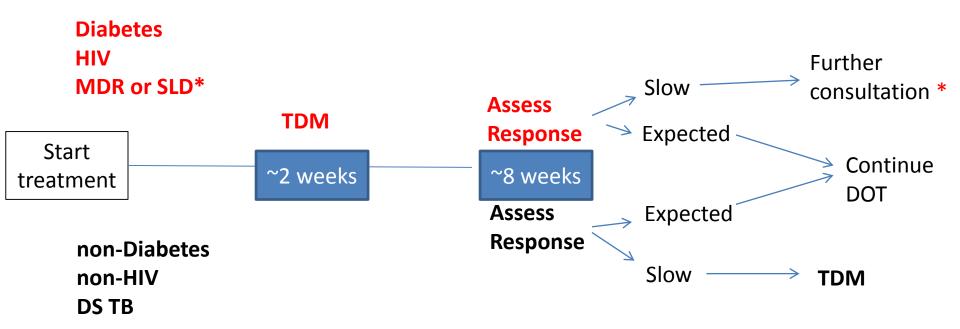
- Diabetics in Virginia were **6.3 times more likely to have slow response** (p<0.001) adjusted for age, gender, prior TB episodes, cavitary disease, HIV, alcohol and tobacco use
- Among slow responders, **diabetics had significantly lower rifampin levels**, measured at the time of estimated peak plasma concentration (C_{max})

Heysell et al. Emerg Infect Dis 2010

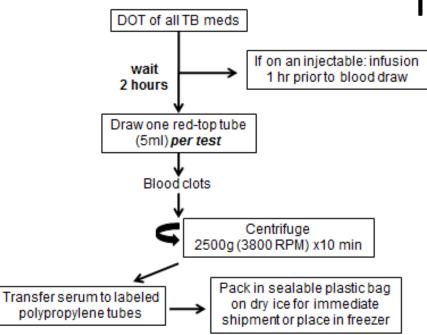
So to summarize thus far...


Diabetes prevalence will increase in TB endemic countries

Diabetes increases the risk of progression to active TB disease (odds **2.4-8.3** compared to non-diabetics) and likely higher for poorly controlled diabetics


Treatment outcomes are worse for diabetic TB patients compared to those without diabetes, but may be restored with metformin

Impaired anti-TB pharmacokinetics results in worse in vitro killing of *M. tuberculosis*


Drug concentrations are suboptimal for some diabetic TB patients and may predict in whom dose increase will improve outcome

Practical use of therapeutic drug monitoring (TDM)

*All MDR cases or those needing second-line drugs in Virginia are managed by TB physician consultants

TDM is now programmatic, so timing/ procedures are consistent

http://www.vdh.virginia.gov/content/u ploads/sites/112/2017/11/2017-Recommendations-and-Procedures-forthe-use-of-Therapeutic-Drug-Monitoring-TDM-112107.pdf

Table 3. Dose adjustment for dispeties and UW/AUDS infected nonulations

	Normal drug lev	Recommended dose adjustment for sub-target INH and RIF: Initiation M-F→	Sub-target INH and Sub-target RIF
Initiation Phase regimen*	Continue INH 300 r and RIF 600 mg M-I	INH 300 mg increase to 450 mg RIF 600 mg increase to 900 mg	Increase INH 450 mg and RIF 900 mg M-F
Continuation Phase regimen	Continue INH and F M-F or thrice week	INH 900 mg	INH 900 mg and RIF 900 mg, M-F or thrice weekly
*All initiation	phase regimens assume	RIF 900 mg	get doses of isoniazid (INH)

of 5 mg/kg and rifampin (RIF) of 10 mg/kg. M-F= Monday through Friday, 5 x weekly schedule. Sub-target concentrations are any below the expected C_{2hr} range.

CDC Guidelines now provide guidance consistent with VA practice

Table 9. Conditions or Situations in Which Therapeutic Drug Monitoring May Be Helpful

Poor response to tuberculosis treatment despite adherence and fully drug-susceptible *Mycobacterium tuberculosis* strain

Severe gastrointestinal abnormalities: severe gastroparesis, short bowel syndrome, chronic diarrhea with malabsorption

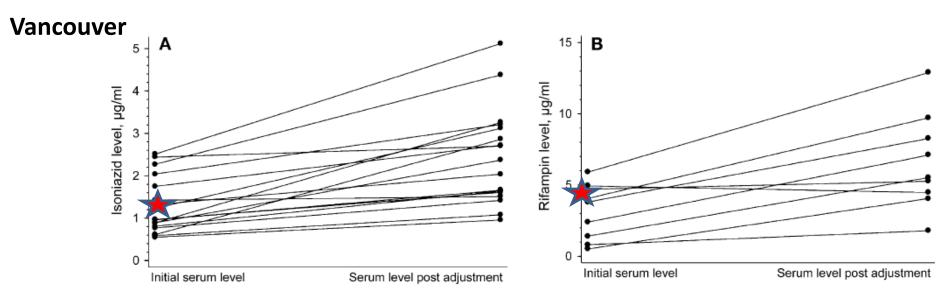
Drug-drug interactions

Impaired renal clearance: renal insufficiency, peritoneal dialysis, critically ill patients on continuous renal replacement

HIV infection

Diabetes mellitus

Treatment using second-line drugs


Abbreviation: HIV, human immunodeficiency virus.


Nahid et al, Clin Infect Dis 2016

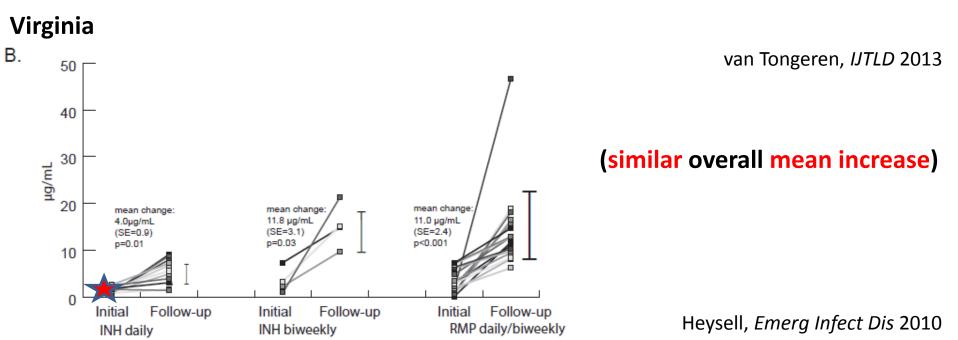

Group	Definition	Drugs to check	Follow-up
1 - Slow responder (failure to clinically improve as expected)	Clients with smear positive pulmonary TB for a prolonged period of time without improvement (defined as a steady decrease from 4+ to 2+; 3+ to 1+; 2+/1+ to smear negative)	Isoniazid and Rifampin ONLY:	Dose increases in consultation with DTBNH staff and medical consultants. Follow-up drug levels can be checked.
2 - All diabetics (HbA1c≥6.5)	Ideally test 2 weeks after treatment begins. If a recent HbA1c (<3mo) result is not available, perform HbA1c to avoid delaying TDM upon intake. After 8 weeks the window of opportunity is lost so we do not perform TDM (unless slow response or another reason is identified)		Automatic dose adjustment for low level (See Table 2). No follow-up drug levels checked.
3 - All HIV positive (regardless of CD4 count or viral load)	Ideally test within 1- 2 weeks after a stable regimen begins.	Isoniazid and Rifampin/Rifabutin ONLY :	Dose increase in consultation with DTBNH staff. Follow-up drug levels can be checked.
4 - Others	Other scenarios in discussion with TB consultants (e.g., new clinical deterioration, receiving second-line TB medications, sudden relapse, severe illness, other co-morbidities)	Case-by-case	Case-by-case

Table 1: Groups considered for TDM

Concentrations increase after dose adjustment

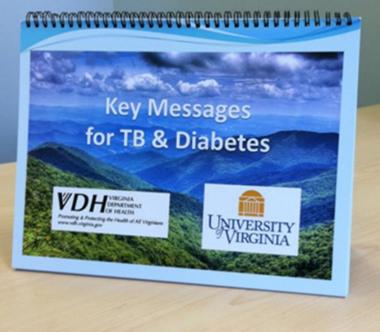
Diabetes (with early TDM) in 2013-14 trend toward faster sputum culture conversion compared to matched* non-diabetes, but not in 2009-10 (without early TDM)

	Matched 2	009-2010		Matched 2	013-14	
	non DM	DM	p-value	non DM	DM	p-value
Outcome	N=60	N=30		N=52	N=26	
culture conv (days ±SD)	57±35	61±32	0.62	57±37	42±22	0.08
2 months culture conv (%N)	34 (57)	15 (50)	0.55	31 (60)	21 (81)	0.12

Difference most apparent in diabetes (2009-2010) matched to diabetes (2013-2014)

Outcome	2009-10 N=26	2013-14 N=26	p-value
culture conv (days ±SD)	62±31	42±22	0.01
2 months culture conv (%N)	13(50)	21(81)	0.04

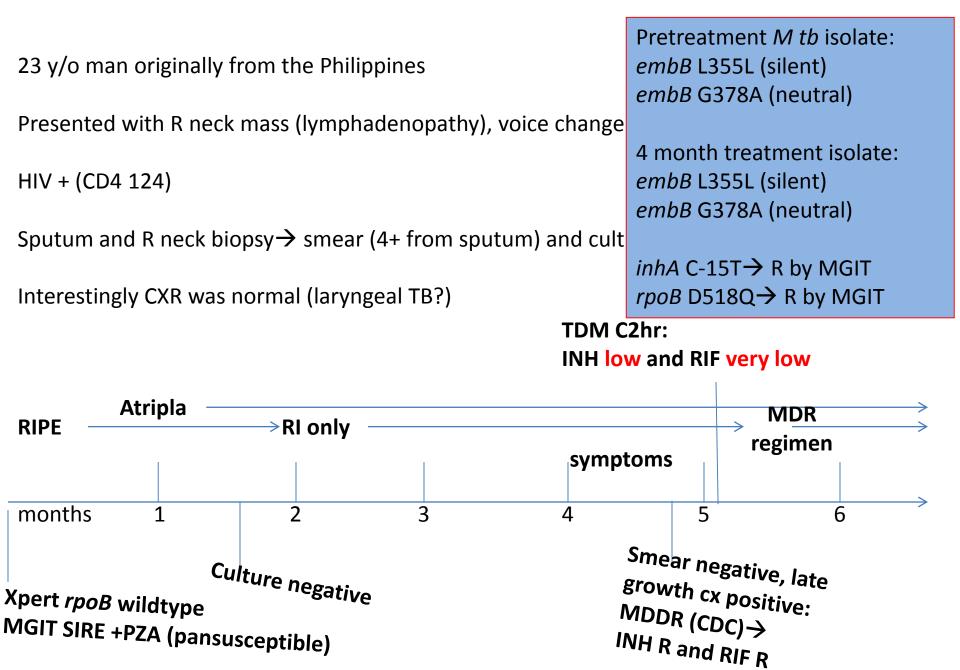
*matched for age (10 yrs), gender, smear status (pos or neg), CXR (cavity or not)

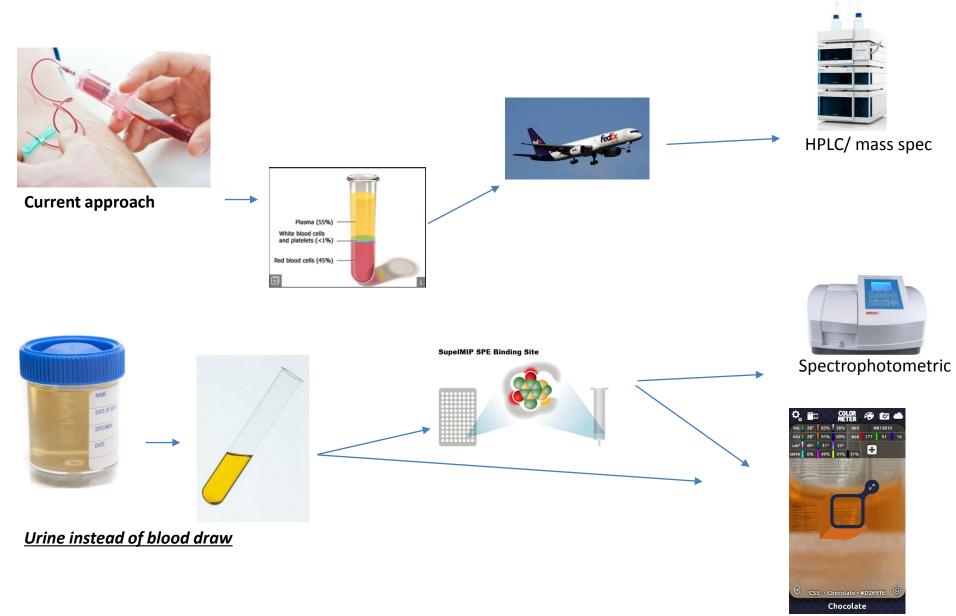

Alkabab et al, BMC Infect Dis 2017

Other early interventions were taking place with therapeutic drug monitoring

 Were other interventions responsible for diabetes patients improved culture conversion?

> nurse-patient educational flipchart


metformin (autophagy) ←


Adapted from ARC and Hawaii DOH

Patients diagnosed with TB in Virginia now receive hemoglobin A1c testing:
212 patients treated for TB in 2016
→ 2-3% are new diabetes diagnosis, primarily for triage to diabetes care

Local case: Unmasked MDR, missed opportunity for early TDM?

Simplifying sample collection, preparation and analysis

NIH R01 to Rutgers and University of Virginia

Colorimetric/ mobile phone

Bali Declaration: November, 2015

"That tuberculosis and diabetes represent two of the greatest global health challenges of our time, and their convergence globally represents a looming co-epidemic,

That this looming co-epidemic threatens progress against TB,

That, based on what we have learned from past co-epidemics, particularly TB-HIV, we must act early and decisively to avoid large numbers of avoidable deaths"

The Union

International Union Against Tuberculosis and Lung Disease Health solutions for the poor

Thank you!

All the Nurses/Case Managers

Denise Dodge Deborah Staley Jane Moore (retired) Suzanne Keller (retired)

Yusra Alkabab Tania Thomas Eric Houpt

Sayera Banu Shahriar Ahmed Kishor Kumar Paul Sara Sabrina Ferdous S.M. Mazidur Rahman

The case of the 90 y/o man with MDR-TB

- 90 year-old man, originally from Peru
- Came to live in the U.S. in November of 2014
- He is healthy, active and asymptomatic. No prior history of TB.

 A skin test is performed because his daughter operates a child-care facility from their home→ skin test positive

• CXR \rightarrow "upper lobe infiltrate with pleural thickening, no cavity"

June 5, 2015 \rightarrow smear negative, culture negative June 6, 2015 \rightarrow smear negative, culture positive (MTb complex) June 7, 2015 \rightarrow smear negative, culture positive (MTb complex)

July 1, 2015 → starts treatment with rifampin, isoniazid, pyrazinamide, ethambutol but isolate ultimately **found to be MDR** (by MGIT SIRE)......

These DST results return

rpoB→ **mutated** (Ser531Leu) *katG*→ **mutated** (Ser315Thr) *inhA*→ no mutation

embB \rightarrow **mutated** (Met306Iso) *pncA* \rightarrow no mutation

gyrA → no mutation gyrB → no mutation

rrs → no mutation *tlyA* → no mutation *eis* → **mutated** (G-37T)

Creatinine Clearance= 44 mL/min

Rifampin (1.0 μ g/ml) \rightarrow R [rifabutin \rightarrow R] Isoniazid (1.0 μ g/ml) \rightarrow R Ethionamide (10.0 μ g/ml) \rightarrow R

Ethambutol (5.0 μ g/ml) \rightarrow R Pyrazinamide (100 μ g/ml) MGIT 960 \rightarrow S

Ofloxacin (2.0 μ g/ml) \rightarrow S

Amikacin (4.0 μ g/ml) \rightarrow S Capreomycin (10.0 μ g/ml) \rightarrow S Kanamycin (5.0 μ g/ml) \rightarrow R

Also: PAS (2.0 μ g/ml) \rightarrow S Streptomycin 2.0 μ g/ml \rightarrow S Streptomycin 10.0 μ g/ml \rightarrow R

A range of treatment approaches→ this is *individualized* care

- Levofloxacin (better tolerated?) \rightarrow 250 mg daily but *TDM*
- Pyrazinamide (continue wt based) \rightarrow 1500 mg daily but *TDM* given high cost of failure
- PAS (given other resistance patterns, avoid cycloserine) \rightarrow 2 g po bid and *TDM*
- Linezolid (low dose given toxicities) \rightarrow 300 mg daily but *TDM* given reports of acquired resistance with lower dose
- → Obtain *MIC*s including cycloserine DST and clofazimine, linezolid, bedaquiline
- \rightarrow Consider adding clofazimine or substitution for other oral if intolerance or toxicity
- \rightarrow Hold on amikacin or capreomycin for now

TDM/ MIC to optimize dose and minimize toxicity

<u>Pyrazinamide</u> 1500 mg daily					
C2hr- 36.59 (expected C2hr: 20-60 μg/ml)		Drug	Mutation	APM	Μ
C6hr- 24.62			katG		
		INH	Ser315Thr	R	R (
Levofloxacin 250 mg daily		RIF	<i>rpoB</i> Ser531Leu	R	R (>
C2hr- 4.71 (expected peak: 8-12 μg/ml)			embB	N	N (2
C6hr- 2.54		EMB	Met306lle	R	R (
₩ IIII		PZA		S (MGIT)	
<u>Levofloxacin</u> 500 mg daily		STR		R	
C2hr- 5.83		CAP		S	S (
		KAN	eis G-37T	R	R (1
PAS 2g bid		АМК		S	S (
C6hr- 4.98 (expected C4-6hr: 20-60 µg/ml)		OFLOX		S	, S (
Com- 4.98 (expected C4-om. 20-00 μg/m)		LEVO			S (0
PAS 4g bid		MOXI			S (0.
<u>C6hr</u> - 46.77		PAS		S	,
com- 40.77		ETO		R	
	1	CS		S	
Linezolid 300 mg daily		LZD			S (0
trough –trace (expected for daily dose)		CFZ			S (0.
C2hr- 6.41 (expected peak: 12-26 µg/ml)		BDQ			S (0.
					- (2-
<u>Linezolid</u> 600 mg daily		MIC test	ing: CDC and N	ational lev	vish H
C2hr- 14.03					