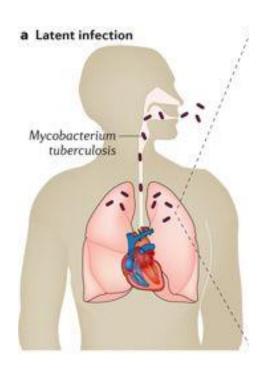
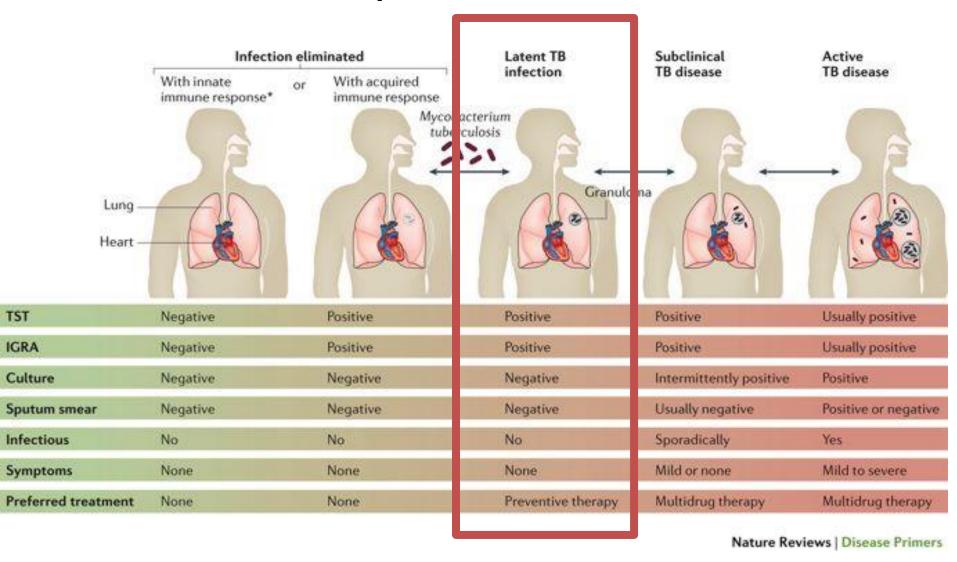

Updates on the management of latent tuberculosis infection

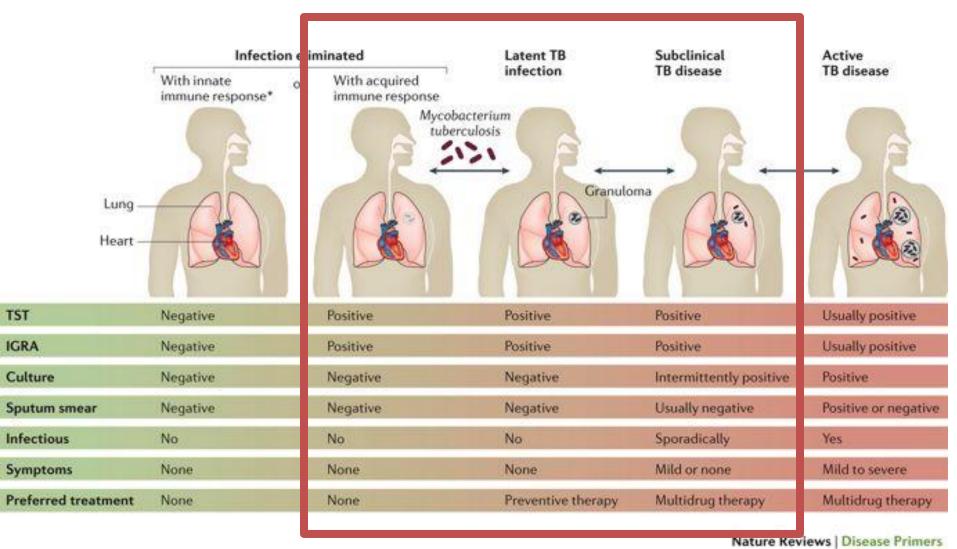
Tania Thomas, MD, MPH
Div. of Infectious Diseases, University of Virginia
TB Consultant, Virginia Department of Health

Outline

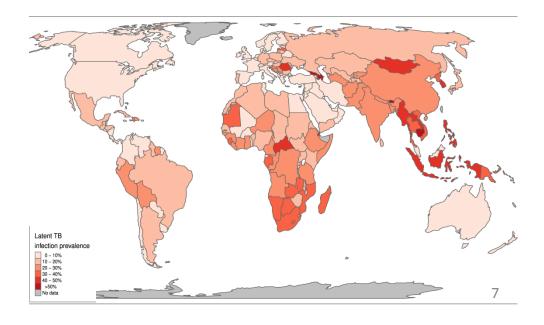

- Definition and Pathogenesis of latent TB
- Global burden of infection
- Who to screen and how
- Review the various treatment options for LTBI and their side effects
- What's on the horizon for LTBI


Latent tuberculosis infection

- Immunologic and clinical diagnosis
- Sensitization to mycobacterial proteins
 - Reactive tuberculin skin test
 - Positive interferon-gamma release assay
- Without clinical signs/symptoms of active disease.


M. tuberculosis infection

The spectrum of TB



The spectrum of TB

Global Epidemiology of LTBI

- 23% of people are infected with TB (1.7 billion)
 - 80% reside in Asia and Africa
 - ~1-5% reside in USA
 - 6% are children <15years of age</p>
 - ~1% recently infected

Active TB in Virginia

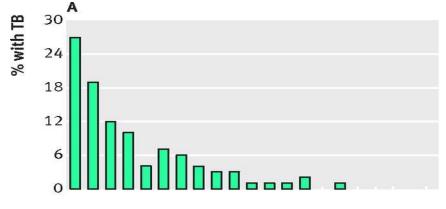
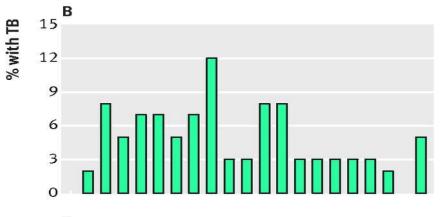
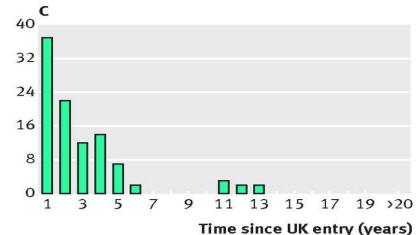

• 83% are foreign-born:

Figure 6: Top Five Countries of Birth of Tuberculosis Cases, Virginia, 2017



Develop TB ~9.7 years after being in US


Time of onset of active TB in Asian immigrants to the UK

A) Time of onset of TB in 128 immigrants who neither left the UK nor had known contacts with TB in the UK before receiving a diagnosis of TB.

B) Time of onset of TB in 59 immigrants who visited their home countries and had no known contacts with TB in the UK before their diagnosis of TB. Time to onset is based on the time of initial UK entry.

% with TB

C) Same group shown (B), but with the time to onset measured by the time from re-entry into the UK after their Asian visits.

TB screening guidelines

- Targeted testing and treatment
- Focus on individuals who would benefit from treatment
- "Decision to test is a decision to treat"

Targeted Tuberculin Skin Testing and Treatment of Latent Tuberculosis Infection in Children and Adolescents

Pediatric Tuberculosis Collaborative Group

JAMA | US Preventive Services Task Force | RECOMMENDATION STATEMENT

Screening for Latent Tuberculosis Infection in Adults
US Preventive Services Task Force Recommendation Statement

IDSA GUIDELINE

Official American Thoracic Society/Infectious Diseases Society of America/Centers for Disease Control and Prevention Clinical Practice Guidelines: Diagnosis of

Tuberculosis in Adults and Children

David M. Lewinsohn, ^{1,8} Michael K. Leonard, ^{2,8} Philip A. LoBue, ^{3,4} David L. Cohn, ⁴ Charles L. Daley, ⁵ Ed Desmond, ⁹ Joseph Keane, ⁷ Deborah A. Lewinsohn, ¹ Ann M. Leonard, ¹ Charles L. Daley, ¹ Ed Desmond, ¹ Joseph Keane, ⁷ Thomas M. Shinnick, ³ Timothy R. Sterling, ¹ David M. Warshauer, ⁸ and Gail L. Woods, ⁹ Lingham, ¹ David M. Warshauer, ⁸ and Gail L. Woods, ⁹ Lingham, ⁹ David M. Warshauer, ⁸ and Gail L. Woods, ⁹ Lingham, ⁹ Lingh

Oregon Health & Science University, Portland, Oregon, *Enrory University School of Medicine and *Centers for Disease Control and Prevention, Atlanta, Georgia, *Newsey-Pakic Health Department on Denver, Colorado, *National Jewish Health and the University of Colorado Denver, and *Coalifornia Department of Public Health, Richmond, *St. James's Hospital, Dublin, Bulluk, *Francis, J. Curry International TB Center, San Francisco, California, *Foundation for Innovative New Diagnostics, Geneva, Switzerland, *NAc6ill University and McGill University and McGill University and McGill University and McGill University of Southampton, United Kingdom, *National Jewish Health, Denver, Colorado, *Nanderbill University School of Medicine, Vanderbill Institute for Global Health, Nashville, Tennessee ***
Wisconsin State Leboratory of Highen, Madison, and *University of Ashranas for Medical Sciences, Little Rock.**

Screen people at "high risk"

Of infection:

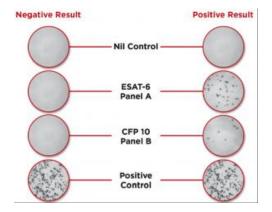
- environmental/behavioral risks
 - Recently exposed/infected (contacts of people with active TB)
 - People in homeless shelters/correctional facilities
 - Health care workers
 - Immigrants from high-burden countries
 - People who use illicit substances&

Of progression to active TB:

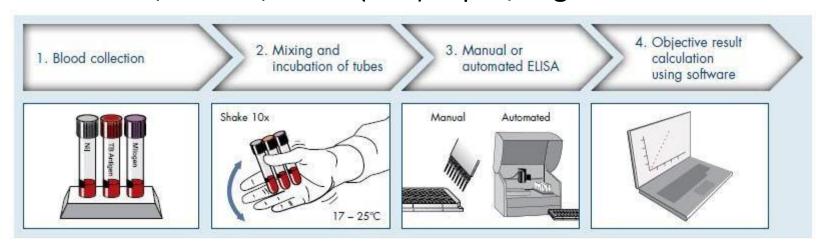
- host-related risk
 - Age <5 years
 - HIV infection
 - Immunocompromised by organ transplant, chemotherapy (incl. prednisone 15mg daily ≥1 month) or malignancy, use of TNF-α blockers
 - Abnormal chest radiograph (apical fibro/nodular changes, "old healed TB")
 - Silicosis
 - Advanced renal failure
 - Diabetes mellitus

How to test? TST vs IGRAs

Tuberculin skin test

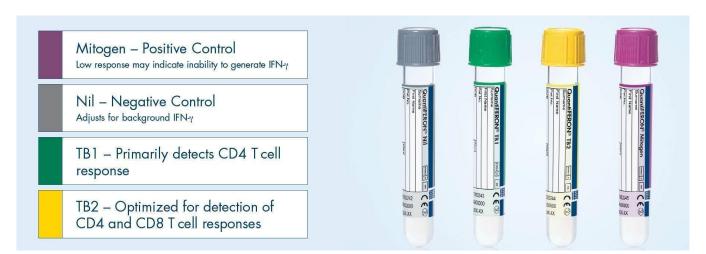

- ~Century old
- Delayed-type
 hypersensitivity reaction
- Purified Protein Derivative
 - Mycobacterial antigens from M.tb, M.bovis BCG, NTM

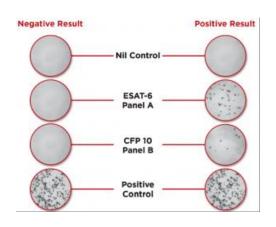
Interferon-y release assays


- Available since 2005
- Measures IFN-γ response to TB antigens from RD-1 region of *M.tb* in CD4+ T cells
 - Proteins are absent from M.
 bovis BCG vaccine

IGRAs

- T-SPOT.TB:
 - ESAT-6 and CFP-10
 - Number of T cells producing IFN-γ




- QuantiFERON-Gold In Tube (QFT-GIT):
 - ESAT-6, CFP-10, TB7.7 (test) & pos/neg controls

IGRAs

- T-SPOT.TB:
 - ESAT-6 and CFP-10
 - Number of T cells producing IFN-γ
- QuantiFERON-Gold In Tube (QFT-GIT):
 - ESAT-6, CFP-10, TB7.7 (test) & pos/neg controls
- QuantiFERON-Plus (4th generation)
 - 2 "TB" tubes, measuring CD4⁺ and CD8⁺ T cell responses

Which test to use: TST vs IGRA?

- 2017 Guidelines:
 - Low to intermediate risk: IGRA preferred over TST
 - Infected with no known risk factors, smokers, DM, systemic steroid treatment.
 - High risk: either can be used, consider dual testing
 - HIV/AIDS, transplantation, immuno-suppressant therapy, silicosis, hemodialysis, recent TB, head/neck cancer, abnormal CXR,

Which test to use in children?

- Children <5 years (CDC/IDSA/ATS): TST preferred
- Children ≥2 years (AAP): either TST or IGRA
 - BCG-vaccinated? Prefer IGRA
 - BCG-vaccinated/TST+? Can check IGRA
- Children <2 years (AAP): TST preferred
- Children <3-6 months (AAP): neither are reliable

Priority candidates for LTBI treatment

TST≥5mm or IGRA+

People living with HIV

Recent contacts of infectious TB

People with fibrotic changes on CXR ("old TB")

Organ transplant recipients

Otherwise immunosuppressed (TNF- α blockade, steroids, chemo)

Priority candidates for LTBI treatment

TST≥5mm or IGRA+	TST <u>></u> 10mm or IGRA+
People living with HIV	People from high-TB-prevalence countries
Recent contacts of infectious TB	Children <4 years of age
People with fibrotic changes on CXR ("old TB")	At high risk of reactivation (DM, end-stage renal disease, silicosis, some malignancies, injection drug use)
Organ transplant recipients	Residents/employees in high-risk congregate settings (corrections, shelters, health care)
Otherwise immunosuppressed (TNF- α blockade, steroids, chemo)	Mycobacteriology laboratory personnel

http://www.tstin3d.com

LTBI Regimens

Drug(s)	Duration	Notes
Isoniazid (+B6)	9 months 6 months	Daily self-administered or twice-weekly administration via DOT
Rifampicin	4 months	Daily administration.
INH + Rifapentine (+B6)	3 months	Weekly administration, DOT preferred (self administered therapy is acceptable) Not approved for <2yrs or pregnant women

INH for LTBI: 6, 9, or 12 months?

Bulletin of the World Health Organization, 60: (4): 555 - 564 (1982)

Efficacy of various durations of isoniazid preventive therapy for tuberculosis: five years of follow-up in the IUAT trial

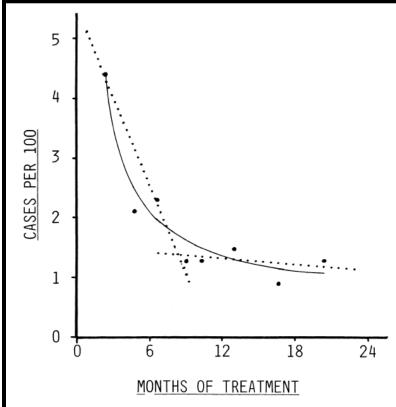
INTERNATIONAL UNION AGAINST TUBERCULOSIS COMMITTEE ON PROPHYLAXIS 1

- Rates of completion are inversely related to treatment duration
- 12 months of treatment was associated with 75%-93% reduction in TB incidence

Table 5. Benefit-to-risk ratio by regimen and year

Year of follow-up	Regimen	Cumulative no. of tuberculosis cases prevented "	Cumulative no. of hepatitis cases incurred b	Benefit- to-risk ratio
First	12-I	2.6	2.5	1.0
	24-I	3.9	3.6	1.1
	52-I	3.6	5.2	0.7

- ~50% of hepatitis occurred in first 3 months
- Although 52-wk regimen prevented more cases, the 24-wk regimen prevented more cases of TB per case of hepatitis caused

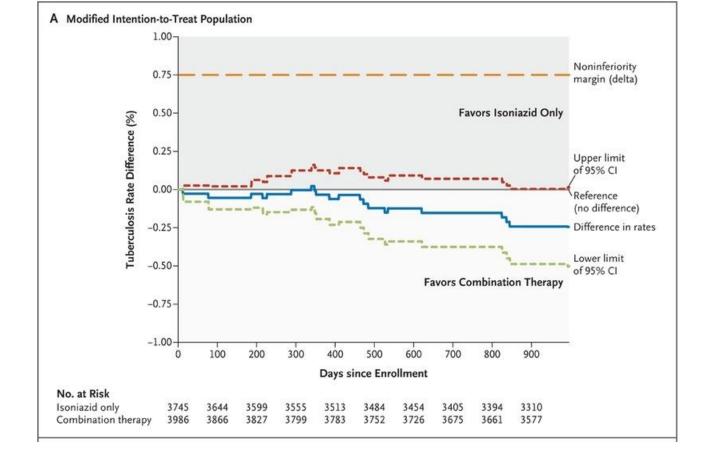

[&]quot; Reduction in cases over placebo regimen (per 1000 persons).

^b Excess of cases over placebo regimen (per 1000 persons).

How much isoniazid is needed for prevention of tuberculosis among immunocompetent adults?

G. W. Comstock

Department of Epidemiology, School of Hygiene and Public Health, Johns Hopkins University, Baltimore, Maryland, USA


Figure Tuberculosis case rates (%) in the Bethel Isoniazid Studies population according to the number of months isoniazid was taken in the combined programs. Dots represent observed values; thin line, the calculated curve (y = a + b/x); and dotted lines, the calculated values based on the first four and last five observations (y = a + bx).

Three Months of Rifapentine and Isoniazid for Latent Tuberculosis Infection

Timothy R. Sterling, M.D., M. Elsa Villarino, M.D., M.P.H., Andrey S. Borisov, M.D., M.P.H., Nong Shang, Ph.D., Fred Gordin, M.D., Erin Bliven-Sizemore, M.P.H., Judith Hackman, R.N., Carol Dukes Hamilton, M.D., Dick Menzies, M.D., Amy Kerrigan, R.N., M.S.N., Stephen E. Weis, D.O., Marc Weiner, M.D., Diane Wing, R.N., Marcus B. Conde, M.D., Lorna Bozeman, M.S., C. Robert Horsburgh, Jr., M.D., Richard E. Chaisson, M.D., for the TB Trials Consortium PREVENT TB Study Team*

Open label, non-inferiority RCT:

- 3mo weekly INH+RPT under DOT versus
- 9mo daily INH alone Self-administered
- ~8000 children >12yrs and adults
- US, Canada, Brazil, Spain

3HP: 7 cases/3986 participants (0.19%) 82% completion 9H: 15 cases/3745 participants (0.43%) 69% completion

3HP: more dropouts due to hypersensitivity & "other" reaction 9H: more dropouts due to hepatotoxicity

Three months of weekly rifapentine and isoniazid for treatment of *Mycobacterium tuberculosis* infection in HIV-coinfected persons

Timothy R. Sterling^a, Nigel A. Scott^b, Jose M. Miro^c,
Guilherme Calvet^d, Alberto La Rosa^e, Rosa Infante^e, Michael P. Chen^b,
Debra A. Benator^{f,g}, Fred Gordin^{f,g}, Constance A. Benson^h,
Richard E. Chaissonⁱ, M. Elsa Villarino^b, the Tuberculosis Trials
Consortium, the AIDS Clinical Trials Group for the PREVENT TB Trial
(TBTC Study 26/ACTG 5259)*

- ~400 participants >12 years of age
- US, Canada, Spain, Brazil, Peru, Hong Kong
- 3HP: 1% TB incidence in 33 months of follow up
- 9H: 3.5% TB incidence

Table 3. Safety and tolerability of the study regimens.

Characteristic	3HP, N = 207, n (%)	9H, N=186, n (%)	P value	% Difference (95% CI) ^a
Treatment completion (MITT)	183/206 (89)	123/193 (64)	< 0.001	25.0 (17.0, 33.0)
Discontinuation because of adverse drug reaction	7 (3)	8 (4)	0.79	-1.0 (-4.7, 2.9)
Grade 3 toxicity	14 (7)	18 (10)	0.36	-3.0 (-8.4, 2.5)
Grade 4 toxicity	4 (2)	10 (5)	0.10	$-3.0\ (-7.2,\ 0.3)$
Grade 5 (death)	6 (3)	5 (3)	1.00	0.2 (-3.0, 3.5)
Discontinuation due to hepatotoxicity ^b	2 (1)	8 (4)	0.05	-3.0 (-6.5, -0.1)
Flu-like/systemic drug reaction	2 (1)	0 (0)	0.50	1.0 (-0.4, 2.3)

Treatment for Preventing Tuberculosis in Children and Adolescents

A Randomized Clinical Trial of a 3-Month, 12-Dose Regimen of a Combination of Rifapentine and Isoniazid

- ~900 participants 2-17 years of age
- US, Canada, Spain, Brazil, Peru, Honk Kong
- 3HP: 0% TB incidence
- 9H: 0.74% TB incidence

Table 2. Tolerability and Reasons for Discontinuation Among Children in the Modified Intention-to-Treat Population

	Pat	tients, No. (%)		
Characteristic	Isoniazid (n = 434)	Rifapentine Plus Isoniazid (n = 471)	<i>P</i> Value ^a	Difference (95% CI) ^b
Treatment completion	351 (80.9)	415 (88.1)	.003	-7.2 (-12.0 to -2.5)
Reason for not completing treatment				
All reasons	83 (19.2)	56 (11.9)	.003	7.2 (2.5 to 12.0)
Discontinuation because of AE ^c	2 (0.5)	8 (1.7)	.11	-1.2 (-2.6 to 0.1)
Withdrawal of informed consent	5 (1 2)	4 (0 9)	74	0 3 (-1 0 to 1 6)
Lost for ≥3 mo during treatment	26 (6.0)	5 (1.1)	<.001	4.9 (2.5 to 7.4)
Physician decision to cancel other than AE	7 (1.6)	3 (0.6)	.21	1.0 (-0.4 to 2.4)
Participant refusal	15 (3.5)	16 (3.4)	>.99	0.1 (-2.3 to 2.4)
Total dose count and/or administration period outside of protocol guidelines ^d	28 (6.5)	20 (4.3)	.18	2.2 (-0.7 to 5.2)

Directly observed vs Self administered?

iAdhere Study

	DOT	SAT + monthly checks	SAT with weekly text reminders + monthly checks
Completion:	87%	74%	76.4%
In the USA:	85%	78%	77%

If DOT not available, OK to use SAT.
 (recommendations for SAT/parent administered treatment extended to children > 2yrs)

INH + RPT weekly dosing for children and adults

Drug	Weight based dose	Comments	Administration
INH	2-12 yrs: 25 mg/kg	- Max dose: 900mg	- Empty stomach preferred.- May crush tablet & mix in a
	<u>></u> 12 yrs: 15 mg/kg	Round up to nearest50 or 100 mg doseMax dose: 900mg	soft food or liquid, or starch- based pudding
RPT	10 to 14 kg: 300 mg >14 to 25 kg: 450 mg >25 to 32 kg: 600 mg >32 to 50 kg: 750 mg >50 kg: 900 mg		 With meals preferred Tablets may be crushed and added to a small amount of semi-solid food and consumed immediately (reduces bioavailability)

Four Months of Rifampin or Nine Months of Isoniazid for Latent Tuberculosis in Adults

D. Menzies, M. Adjobimey, R. Ruslami, A. Trajman, O. Sow, H. Kim, J. Obeng Baah, G.B. Marks, R. Long, V. Hoeppner, K. Elwood, H. Al-Jahdali, M. Gninafon, L. Apriani, R.C. Koesoemadinata, A. Kritski, V. Rolla, B. Bah, A. Camara, I. Boakye, V.J. Cook, H. Goldberg, C. Valiquette, K. Hornby, M.-J. Dion, P.-Z. Li, P.C. Hill, K. Schwartzman, and A. Benedetti

- ~6800 adults, 9 countries, open-label, RCT
- 4R is non-inferior to 9H in preventing TB
- Treatment completion higher in 4R (79% vs 63%)
- 4R: less adverse events
- SAEs noted:
 - rash/allergy, hematologic, GI upset, drug interactions

Safety and Side Effects of Rifampin versus Isoniazid in Children

T. Diallo, M. Adjobimey, R. Ruslami, A. Trajman, O. Sow, J. Obeng Baah, G.B. Marks, R. Long, K. Elwood, D. Zielinski, M. Gninafon, D.A. Wulandari, L. Apriani, C. Valiquette, F. Fregonese, K. Hornby, P.-Z. Li, P.C. Hill, K. Schwartzman, A. Benedetti, and D. Menzies

- ~850 children with LTBI or TB exposure (<5yrs)
- Treatment completion higher in 4R (87% vs 77%)
- Minor side effects were common (94% in both)
- No Grade 3+ SAEs noted
- 0 TB cases in 4R, 2 TB cases in 9H

Selecting a regimen?

- Drug interactions (especially with rifamycins)
- Adverse effects
- Adherence
- Concerns with pill burden
 - -9H + B6 : 2 pills/day
 - 4R: 2 pills/day
 - 3HP + B6: upto 10 pills weekly
- Costs
- Pregnancy
- Preferences (patient, provider, system)

Adverse effects: rifamycins

- Hypersensitivity reactions (<0.5-1%)
 - Rash, angioedema, syncope
 - thrombocytopenia/hemolytic anemia
- Cutaneous reactions (mild, 6%)
- Flu-like illness/myalgias (~3%), arthralgias
- Gl upset: pain, nausea, vomiting,
- Hepatotoxicity (<1%)
- Orange discoloration of body fluids

Adverse effects: isonazid

- Hepatotoxicity (10-20%: asymptomatic, <1% symptomatic)
 - Underlying liver disease, alcoholism, other hepaticallymetabolized medications,
 - Age:
 - <20 yrs: 1/1000
 - 20-34 yrs: 3/1000
 - 35-49 yrs: 12/1000
 - 50-64 yrs: 23/1000
 - >65 yrs: 8/1000
- Peripheral neuropathy (0.2%)
 - DM, HIV, renal failure, alcoholism, meat-deficient diet
- CNS: headaches, insomnia

Ongoing management

- Lab testing at baseline/during treatment
 - If at risk of hepatotoxicity (underlying liver disease)
 - Abnormal LFT results at baseline
 - Anyone with symptoms: fatigue/malaise, anorexia,
 abd pain, n/v, pale stools, dark urine, fevers/chills
- Follow up visits:
 - Symptom screening
 - Adherence checks, refills

LTBI testing:

– "incipient TB" biomarkers

LTBI treatment:

- Daily 1HP "ultra short course":
 - non-inferior to 9H among ~3000 HIV+ adults from TBendemic regions or TST+. (CROI, 2018)
- Pediatric-friendly dispersable formulations

Prevention:

– New TB vaccines?

Treatment:

 Active TB in children: Shorter duration for mild forms of disease in children (SHINE study, 4 mos vs 6 mos)

Thank you

Tania Thomas, MD, MPH,
UVA Division of Infectious Diseases & International Health

Tania.Thomas@virginia.edu

Office: 434-243-9592

Cell: 434-249-6697