INTERPRETATION OF CHEST RADIOGRAPHS

Ghassan Ilaiwy, MD MPH

Fairfax County Health Department

Talk Outline

- Role of Chest X-ray (CXR) in TB care
- Assessing the quality of the CXR
- Systematic approach to reading a CXR
- CXR findings that are more specific to TB
- Examples

A PRIMER FOR CLINICIANS

Radiographic Manifestations of Tuberculosis

SECOND EDITION 2006

(REPRINT 2020)

CHARLES L. DALEY, MD

MICHAEL B. GOTWAY, MD

ROBERT M. JASMER, MD

- A. Yes
- B. No

Image credit: Daley CL, Gotway MB, Jasmer RM. Radiographic Manifestations of Tuberculosis: A Primer for Clinicians:. Second Edition (2006). Repreint 2020

• A. Yes

• B. No

Image credit: Daley CL, Gotway MB, Jasmer RM. Radiographic Manifestations of Tuberculosis: A Primer for Clinicians:. Second Edition (2006). Repreint 2020

- A. Yes
- B. No

Image credit: Daley CL, Gotway MB, Jasmer RM. Radiographic Manifestations of Tuberculosis: A Primer for Clinicians:. Second Edition (2006). Repreint 2020

- A. Yes
- B. No

Image credit: Daley CL, Gotway MB, Jasmer RM. Radiographic Manifestations of Tuberculosis: A Primer for Clinicians:. Second Edition (2006). Repreint 2020

- A. Yes
- B. No

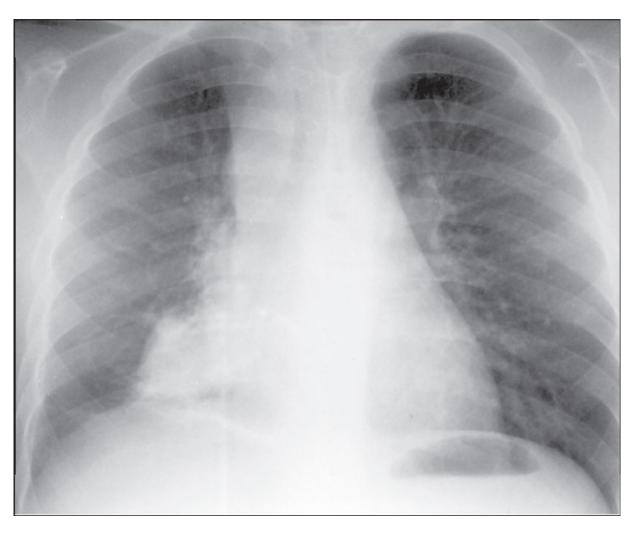


Image credit: Daley CL, Gotway MB, Jasmer RM. Radiographic Manifestations of Tuberculosis: A Primer for Clinicians:. Second Edition (2006). Repreint 2020

• A. Yes

• B. No

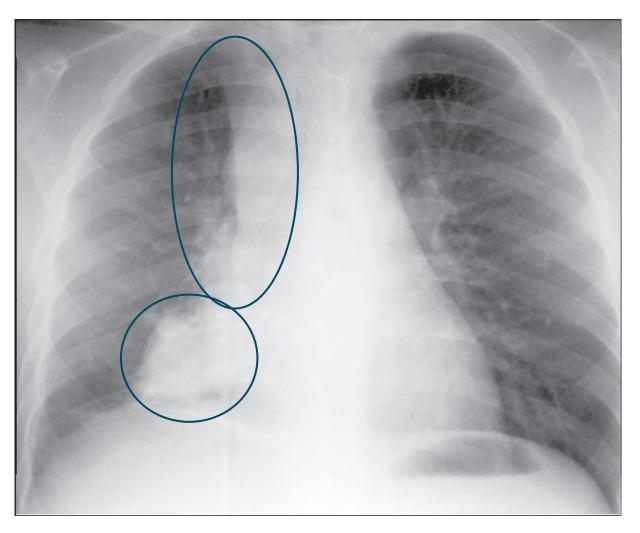
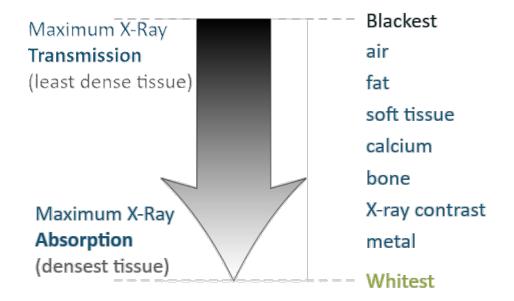
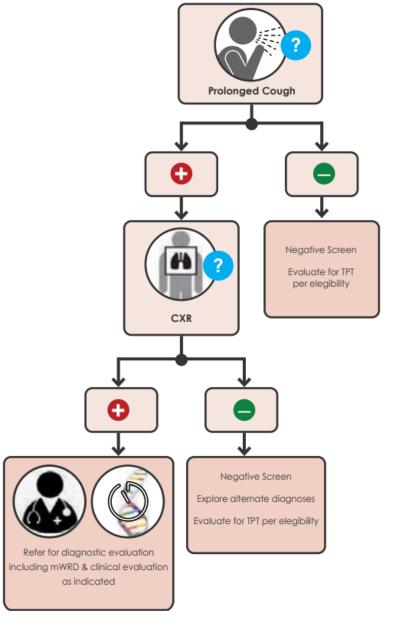




Image credit: Daley CL, Gotway MB, Jasmer RM. Radiographic Manifestations of Tuberculosis: A Primer for Clinicians:. Second Edition (2006). Repreint 2020

Role of CXR

- Play an important role in TB disease evaluation
- Sensitive but less specific
- Part of many TB evaluation algorithms

CXR are only one piece of TB evaluation

The Silhouette Sign

- A boundary will appear between 2 structures of different densities due to differential absorption of the x-ray beam
- An example: Right heart border and the right middle lobe
- When the right middle lobe changes density due to pneumonia or edema, it approximates the density of the right heart border → The boundary will no longer be visible → The silhouette sign

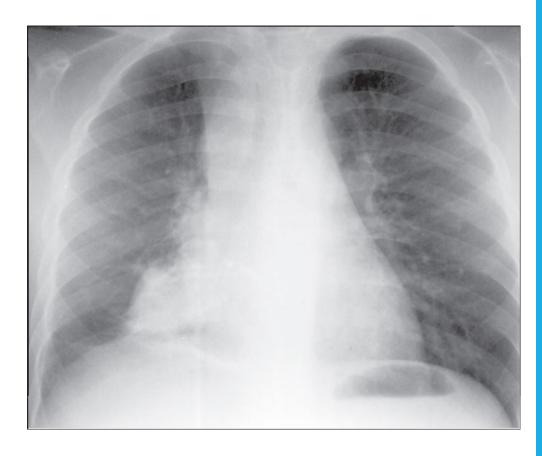
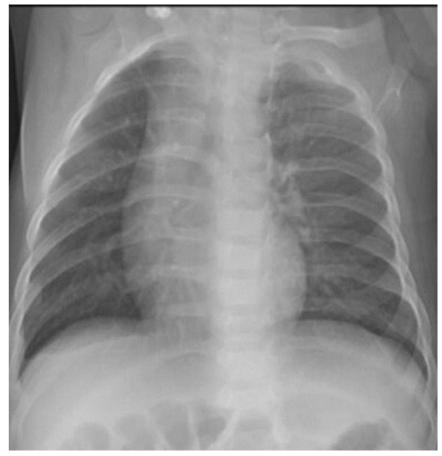
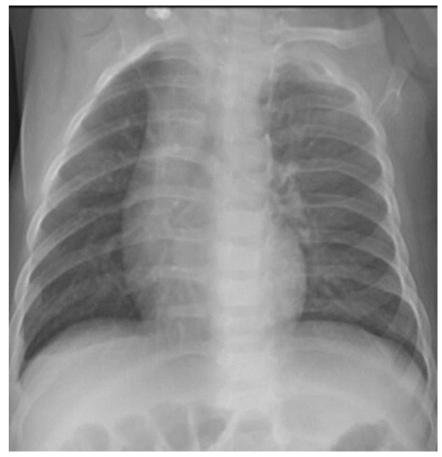



Image credit: Daley CL, Gotway MB, Jasmer RM. Radiographic Manifestations of Tuberculosis: A Primer for Clinicians:. Second Edition (2006). Repreint 2020


- A. Yes
- B. No

This image was contributed by Etienne Leroy-Terquem from Support Pneumologique International, to the Union's Diagnostic CXR Atlas for Tuberculosis in Children Image Library

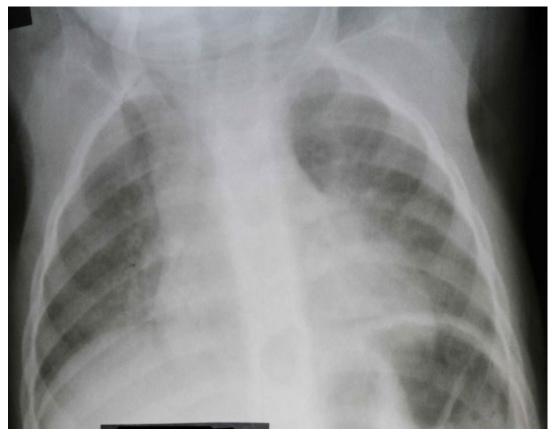
A. Yes

• B. No

This image was contributed by Etienne Leroy-Terquem from Support Pneumologique International, to the Union's Diagnostic CXR Atlas for Tuberculosis in Children Image Library

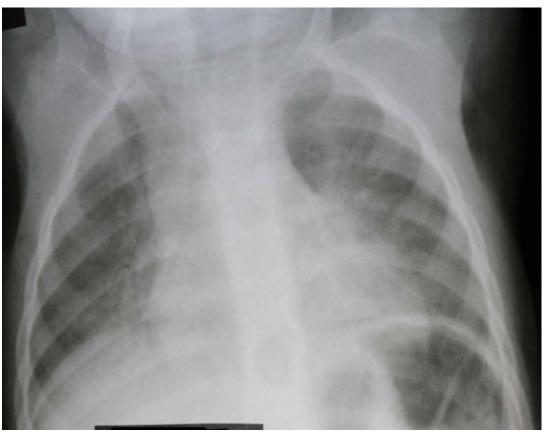
- A. Yes
- B. No

This image was contributed by the Desmond Tutu TB Centre, Stellenbosch University, to the Union's Diagnostic CXR Atlas for Tuberculosis in Children Image Library


A. Yes

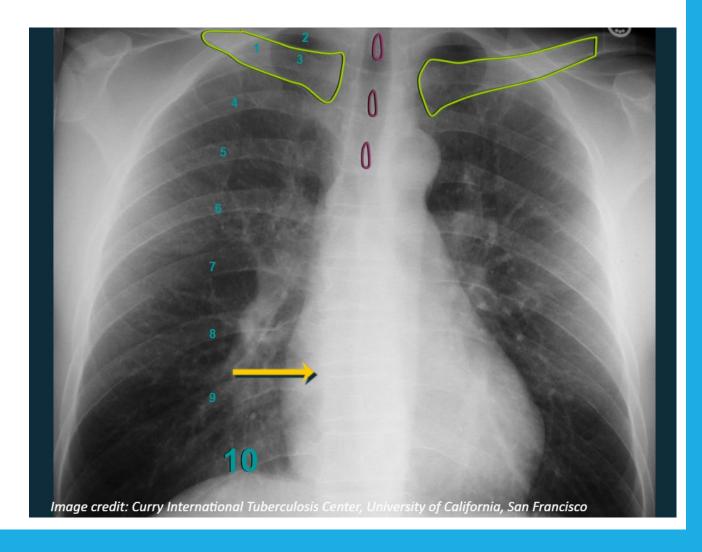
• B. No

This image was contributed by the Desmond Tutu TB Centre, Stellenbosch University, to the Union's Diagnostic CXR Atlas for Tuberculosis in Children Image Library


- A. Yes
- B. No

This image was contributed by the Desmond Tutu TB Centre, Stellenbosch University, to the Union's Diagnostic CXR Atlas for Tuberculosis in Children Image Library

A. Yes


• B. No

This image was contributed by the Desmond Tutu TB Centre, Stellenbosch University, to the Union's Diagnostic CXR Atlas for Tuberculosis in Children Image Library

Assessing the quality of the CXR

- Position: medial clavicle heads are equidistant from spinous process
- Inspiratory effort: 9-10 posterior ribs
- Penetration: thoracic intervertebral disc space just visible

Systematic approach to reading a CXR

- Lungs:
 - Apices, retrocardiac and behind the diaphragm
- Pleura
- Cardiac-mediastinal: Lymphadenopathies:
 - Paratracheal, perihilar, subcarinal, paravertebral
- Osseous structures
- Intra-abdominal

Normal CXR-Frontal

- AA: Aortic arch
- APO: Aortopulmonary window
- PLPA: Proximal left pulmonary artery
- LB: Left bronchus
- LIPA: Left interlobar pulmonary artery
- LAA: Left atrial appendage
- DA: Descending aorta
- LV: Left ventricle
- LD: Left diaphargam
- CPA: Costophrenic angle
- RD: Right diaphragm
- RA: Right atrium
- RIPA: Right interlobar pulmonary artery
- SVC: Superor vena cava
- AV: Azygous vein
- RPS: Right paratracheal stripe

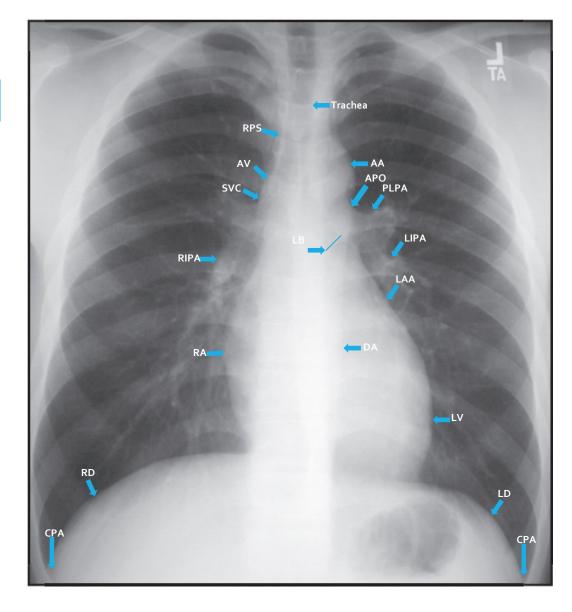
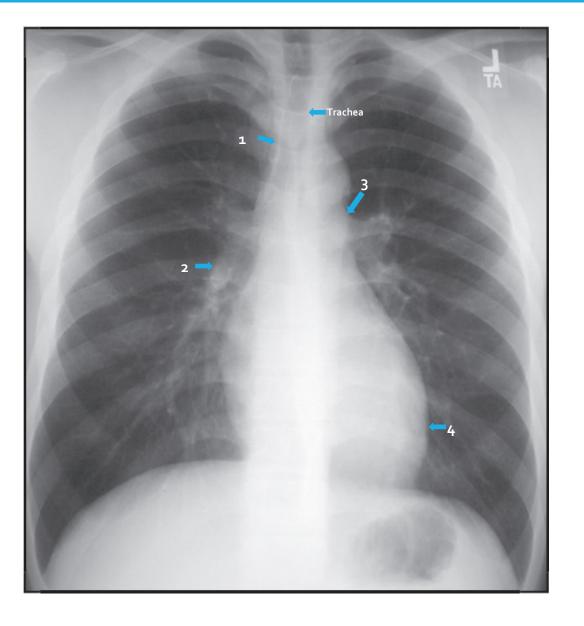
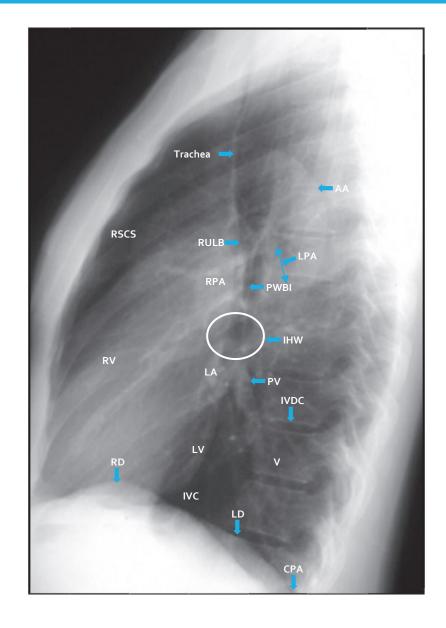
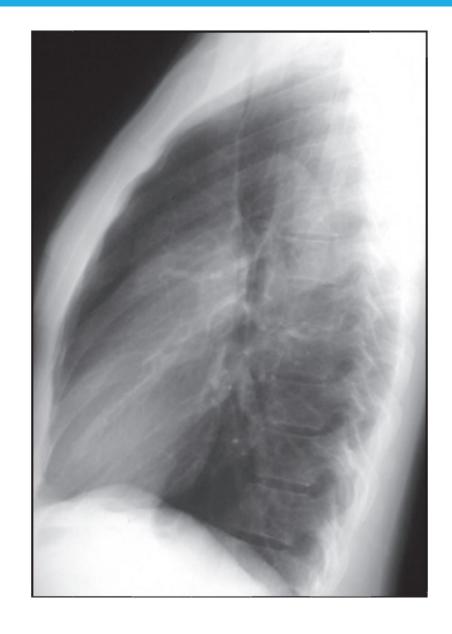


Image credit: Daley CL, Gotway MB, Jasmer RM. Radiographic Manifestations of Tuberculosis: A Primer for Clinicians:. Second Edition (2006). Repreint 2020

Normal CXR-Frontal

- 1-RPS
- 2-RIPA
- 3- APO
- 4-LV

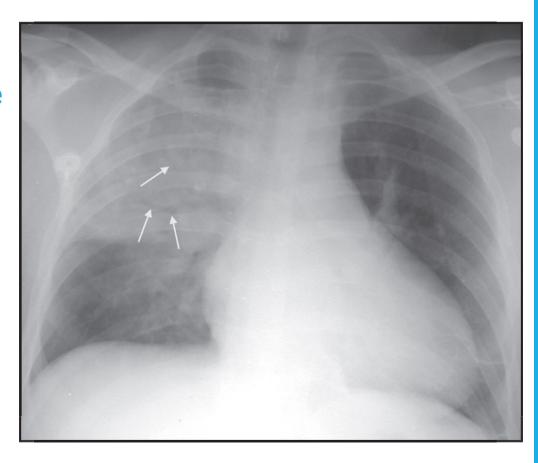




Image credit: Daley CL, Gotway MB, Jasmer RM. Radiographic Manifestations of Tuberculosis: A Primer for Clinicians:. Second Edition (2006). Repreint 2020

Normal CXR-Lateral

- RSCS: Retrosternal clear space (Superior mediastinum pathology)
- AA: Aortic arch
- RULB: Right upper lobe bronchus
- LPA: Left pulmonary artery
- RPA: Right pulmonary artery
- PWBI: Posterior wall of bronchus intermedius
- IHW: Infrahilar window (subcarinal lymph nodes)
- LA: Left atrium
- PV: Pulmonary veins
- IVDC: Intravertebral disc space
- V: Vertebral body
- LV: Left ventricle
- RD: Right diaphragm
- LD: Left diaphragm
- IVC: Inferior vena cava
- CPA: Costophrenic angle

Normal CXR-Lateral



Basic Patterns of Disease on CXR

- Consolidation
- Interstitial
- Nodules
- Masses
- Cysts and cavities
- Lymphadenopathies
- Plural abnormalities

Consolidation

- Occurs when the air within the lung parenchyma is replaced by another substance (fluids, blood, pus, etc.)
- Occasionally, an air bronchogram can be visible when the air within a bronchus is outlined by the consolidated surrounding lung parenchyma
- When the lung parenchyma is aerated, bronchi are not visible since they're also filled with air)

Linear and Reticular Interstitial Markings

- These pattern suggest a process localized to the lung interstitium
- Linear opacities are typically septal lines that are perpendicular to the pleura
- Reticulations refer to the multiple lines intersecting each others at different angles resembling a net

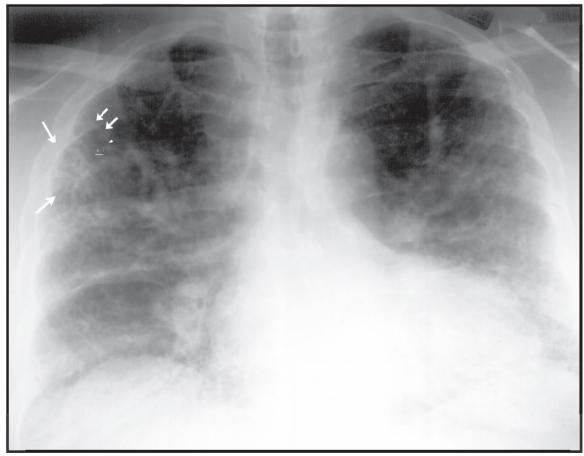
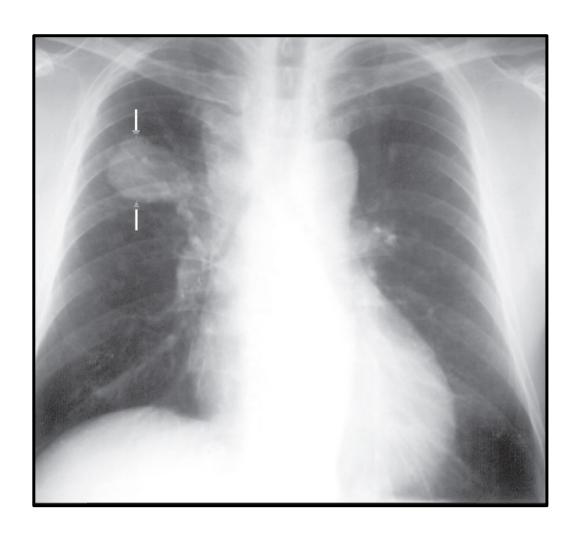
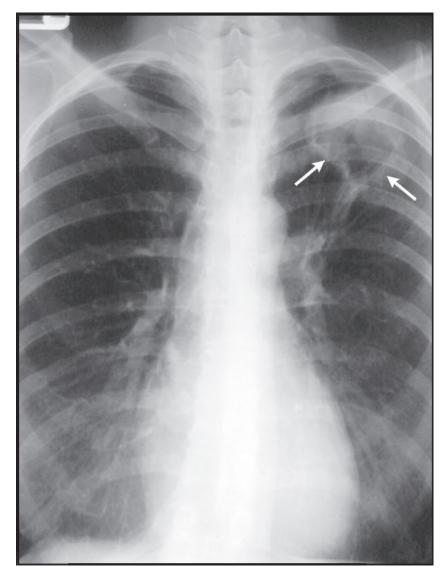



Image credit: Daley CL, Gotway MB, Jasmer RM. Radiographic Manifestations of Tuberculosis: A Primer for Clinicians:. Second Edition (2006). Repreint 2020


Nodules and Masses

- Discrete areas of increased opacity
- Can involve the airway or the interstitium
- Should be characterized based on the following:
 - Size
 - Number
 - Location
 - Borders
 - Calcification
- Masses are nodules larger than 3 cm

Cysts and Cavities

- Cavities occur when pulmonary tissue undergoes necrosis due to infection, neoplasm, or infarction
- Cysts are formed by separate processes and can be seen infections, trauma, toxic ingestions among other causes
- Can also be characterized by
 - Size, number and location
 - Character of the inner lining
 - Wall thickness
 - Content of the lesion (fluid vs air filled)

Lymphadenopathies

- Can be noted along the cardiomediastinal contours:
 - Paratracheal
 - Subcarinal (easier to see on later CXR)
 - Aorticopulmonary
 - Hilar
 - Paraspinal

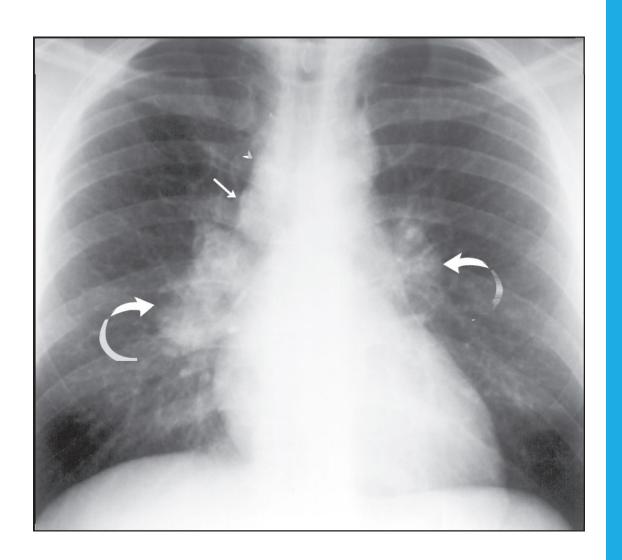
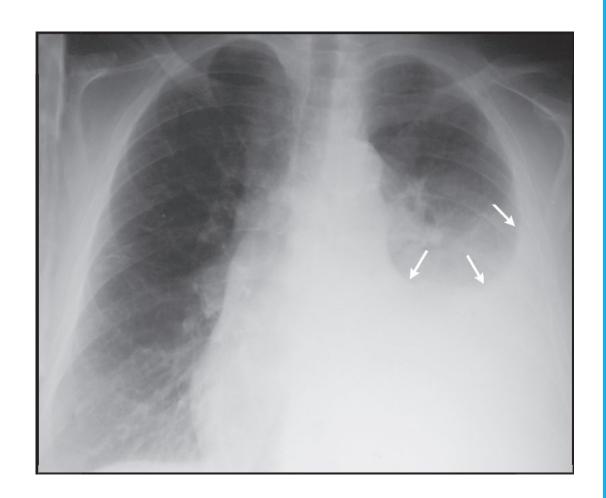



Image credit: Daley CL, Gotway MB, Jasmer RM. Radiographic Manifestations of Tuberculosis: A Primer for Clinicians:. Second Edition (2006). Repreint 2020

Plural abnormalities

- Nodular thickening (may suggest malignancy)
- Calcifications (Prior empyema, hemothorax, TB, asbestos-related pleural disease)
- Effusions, simple or loculated

CXR findings that are more specific to TB

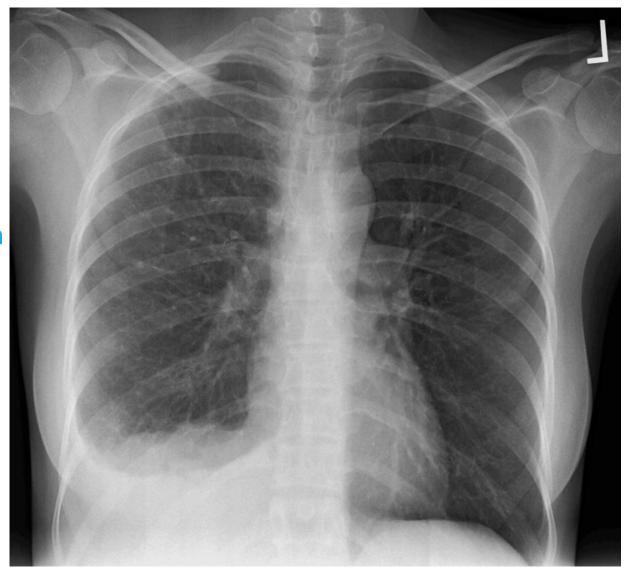
- While airspace consolidation is one of the most common ways TB disease may present on CXR, it is not specific to TB
- CXR findings that are more specific to TB include:
 - Cavitations
 - Miliary pattern
 - Hilar and mediastinal lymphadenopathies, especially in children
 - Pleural effusions in high burden setting

A note on "post-primary" vs "primary TB"

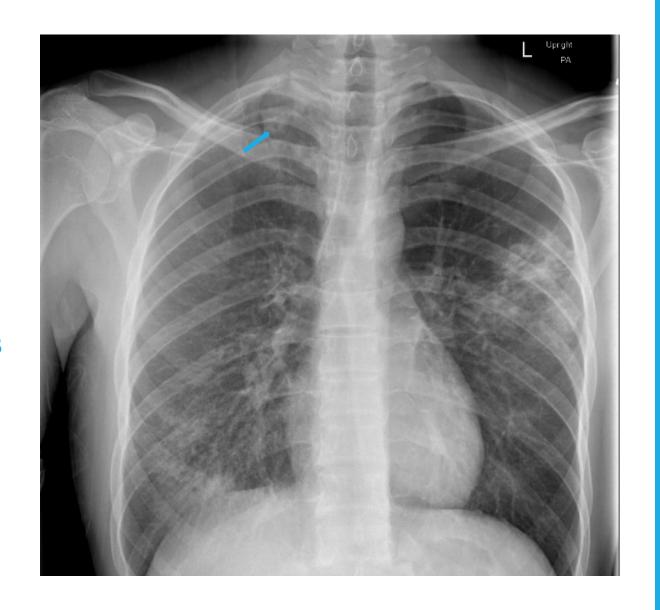

- Has no bearing on treatment or management.
- Different CXR patterns

TB Pattern	"Typical" (Post-Primary)	"Atypical" (Primary)		
Infiltrate	85% upper	Upper : Lower 60 : 40 Usually upper in children		
Cavitation	Common	Uncommon		
Adenopathy	Uncommon	Children common Adults ~30% Unilateral > bilateral		
Effusion	May be present	May be present		

Image credit: Curry International Tuberculosis Center. Basic Chest Radiology for the TB clinician


Example 1

- 29 F, Born in Myanmar
- +QFT, TB screening for immigration
- No TB symptoms
- Received 4R


Example 2

- 36 F, Born in Ethiopia
- Hx of Crohn's on adalimumab
- 2 months of fever, chest pain & cough
- Thoracentesis lymph predominant
- Bronchoscopy: purulent fluid,
- BAL AFB cx +MTB complex.
- Resolution after 9 months
 of INH/RIF (did not tolerate PZA)

Example 3

- 19 M, US born, travel to Guatemala
- 2 weeks of productive cough
- Failed to improve with CAP abx
- CXR was done
- Sputum collected, GeneXpert +MTB PCR, no rpoB mutations.
- Ongoing treatment

References and Resources

- Daley CL, Gotway MB, Jasmer RM. Radiographic Manifestations of Tuberculosis: A Primer for Clinicians, Second Edition, 2020 reprint. San Francisco: Curry International Tuberculosis Center; December 2020.
- International Union Against Tuberculosis and Lung Disease. Diagnostic CXR Atlas for Tuberculosis in Children image library. 2025. Online.
- WHO consolidated guidelines on tuberculosis: Module 3: Diagnosis Tests for tuberculosis infection. Geneva: World Health Organization; 2022
- Saukkonen JJ, Duarte R, Munsiff SS, et al. Updates on the Treatment of Drug-Susceptible and Drug-Resistant Tuberculosis: An Official ATS/CDC/ERS/IDSA Clinical Practice Guideline. Am J Respir Crit Care Med. 2025. PMID: 40693952

Acknowledgement

Many thanks to our clinic patients who have provided their de-identified CXRs for this talk

Table 2.4 Number needed to screen (NNS) for TB disease in general populations and in community-based screening

	Weighted mean NNS (range) (number of studies)						
Primary screening strategy	Low or moderate TB incidence ^a	Medium or high TB incidence ^a					
Symptoms	4424 (2417-6031) n=1	1058 (31-4085) (n=22)					
CXR	3016 (n=1)	475 (186-605) (n=3)					
Symptoms or CXR	1567 (23-2857) (n=3)	426 (125-763) ^b (n=18)					
mWRD (Xpert MTB/RIF)	_	1002 (338-1010) (n=2)					

^{*}Low or moderate TB incidence (up to 100/100 000 population), medium or high TB incidence (> 100/100 000 population)

Table 3.1 Diagnostic accuracy of symptoms, CXR and mWRDs for screening for TB disease among HIV-negative individuals *

Screening test	Sensitivity (%)	Specificity (%)
Prolonged cough (≥ 2 weeks)	42	94
Any cough	51	88
Any TB symptom (cough, haemoptysis, fever, night sweats, weight loss)	71	64
CXR (any abnormality)	94	89
CXR (abnormality suggestive of TB)	85	96
MWRDs (adults at high risk)	69	99

^{*} For people living with HIV, see Chapter 5. For more detail on the systematic review and data presented here, see **Web Annex B** of the quidelines)

Table 8. Should chest X-ray (any abnormality) be used to screen for TB disease in the general population?

Sensitivity	0.94 (95% CI: 0.92 to 0.96)
Specificity	0.89 (95% CI: 0.85 to 0.92)

Prevalences 0.5% 1% 2%

Outcome	№ of studies (№ of Study design patients)		Factors that may decrease certainty of evidence				Effect per 1,000 patients tested					
		Study design	Risk of bias	Indirectness	Inconsistency	Imprecision	Publication bias	pre-test probability of 0.5%	pre-test probability of 1%	pre-test probability of 2%	Test accuracy CoE	
True positives (patients with active TB)	22 studies 4243 patients		cross-sectional (cohort type	very serious*	not serious	serious ^b	not serious ^c	none	5 (5 to 5)	9 (9 to 10)	19 (18 to 19)	₩ VERY LOW
False negatives (patients incorrectly classified as not having active TB)		accuracy study)						0 (0 to 0)	1 (0 to 1)	1 (1 to 2)		
True negatives (patients without active TB)	22 studies 1012752	cross-sectional (cohort type	not serious ^d	not serious	serious *	serious ^f	none	884 (848 to 912)	880 (844 to 908)	871 (835 to 899)	⊕⊕OO LOW	
False positives (patients incorrectly classified as having active TB)	patients	tients accuracy study)						111 (83 to 147)	110 (82 to 146)	109 (81 to 145)		

b 15 studies with 18 cohorts