

Virginia Annual HAB Task Force Meeting January 15, 2021

Morgaine McKibben NASA Postdoctoral Program Fellow **Universities Space Research Association** NASA Goddard Space Flight Center - Applied Sciences morgaine.mckibben@nasa.gov

Identification of phytoplankton groups in the Chesapeake Bay & potential applications to regional HAB monitoring

Motivation: Upcoming hyperspectral, satellite-based monitoring

Example targeted data products:

Absorbing aerosols

Dissolved organics

Phytoplankton community composition

Particles sizes

Phytoplankton physiology

Pigment fluorescence

Coastal biology

Aerosol and cloud properties; ocean color atmospheric correction

~2023 launch 1-2 day repeat 1 km resolution

Need regional-scale research to develop tools that leverage hyperspectral PACE observations

- ✓ Engaging end users prior to launch
- ✓ Advancing coastal/estuarine satellite observations
- ✓ Enhanced identification & monitoring of harmful algal blooms from space

Motivation: Chesapeake Bay & Harmful Algal Blooms (HABs)

Chesapeake a good candidate for developing new coastal satellite monitoring tools:

- ✓ HABs in Chesapeake impact lucrative fisheries, public health, recreation
- ✓ High *in situ* data density: HAB & water quality monitoring

✓Need for satellite-based HAB monitoring tools

- ✓ Established relationships: NASA-GSFC Applied Sciences Chesapeake Interagency Meetings (monthly) & ongoing efforts with
 - Maryland Dept of Natural Resources
 - Maryland Dept of Environment
 - Virginia Dept of Health
 - Chesapeake Bay Program
 - NOAA, USGS
 - Several others...

HAB species: Alexandrium Monilatum Credit: VIMS

Bloom of A. Monilatum in Chesapeake Bay

Credit: Virginia Institute for Marine Science Wolfgang Vogelbein 9/12/2016

Research Goal

- Using hyperspectral information can we reliably identify phytoplankton groups in the **Chesapeake Bay?**
- How can this information be applied to enhance HAB monitoring in the region?

- Results:
 - ✓ Lay a foundation for improved HAB monitoring with hyperspectral information (satellite, field based) in the Chesapeake Bay

MODIS 1km Chl-a data, anticipated OCI resolution Credit: Stephanie Uz, GSFC

Primer: Aquatic optics

In water constituents can be deduced using optical measurements, radiative transfer theory & associated radiative transfer equations: the color of the water can tell us what's in it

Class B

Class E

Variability in coastal **ocean color** as seen by the eye (squares on left) and by measures of **remote sensing reflectance (R**_{rs})

Approach: PHYDOTax, PHYtoplankton Detection with Optics

Phytoplankton functional types (class-level) identified from remote sensing reflectance (Palacios et al. 2012)

Dinoflagellate Cryptophyte Diatom

Adapted from slide contributed by S. Palacios, CSU Monterey Bay

Chlorophyte

Haptophyte

Cyanophyte

Approach: PHYDOTax, PHYtoplankton Detection with Optics

Phytoplankton functional types (class-level) identified from remote sensing reflectance (Palacios et al. 2012)

Adapted from slide contributed by S. Palacios, CSU Monterey Bay

Haptophyte

Cyanophyte

Hyperspectral PFT identification in the Chesapeake Bay

Research Questions

Objective 1: Most robust approach for Chesapeake Bay R_{rs} Signature Library?

- Representative phytoplankton groups?
- How to represent other optically-active components? (e.g. sediment, colored dissolved organic matter)

Objectives 2 & 3: Does it work? Quantitative evaluation of algorithm output.

Objective 3: Practical applications in the context of HAB monitoring?

Objective 3: Evaluation & application in the context of HAB monitoring

Compare phytoplankton classes from satellite imagery to available in situ monitoring datasets

- Match-up satellite, airborne imagery + with *in situ* data (quantitative evaluation)
- Retrospective match up of HAB/water quality monitoring data with algorithm output from different in situ, hyperspectral data (e.g.

Potomac River & Chesapeake Bay from Space https://oceancolor.gsfc.nasa.gov

Example of Applied Usage: Satellite imagery HICO Imagery: Potomac River, July 30 2014

True Color

Example of Applied Usage: Satellite imagery

HICO Imagery: Potomac River, July 30 2014

Colors = Percent Phytoplankton Class of Total Community

(Note: L3 R_{rs} data; standard atm corr; no L2 flags; Monterey Bay R_{rs} Signature Library)

- Marshall et al., 2005 & 2009)

With Satellite Imagery:

- **Monitoring:** Track dinoflagellate bloom initiation and movement over time remotely
- dinoflagellate bloom areas

Diatoms are dominant bloom producers, periodic dinoflagellate blooms (e.g. Kemp et al. 2005,

HABs of concern with respect to PFTs: dinoflagellates, cyanobacteria (e.g. Wolny et al. 2020)

Adaptive sampling: Observe spatial extent of bloom, spend more resources sampling in high

Example of Applied Usage: Satellite imagery

HICO Imagery: Potomac River, July 30 2014

Colors = Percent Phytoplankton Class of Total Community

(Note: L3 R_{rs} data; standard atm corr; no L2 flags; Monterey Bay R_{rs} Signature Library)

- 8 - 6 - 4 - 4 - 2 - 2

If we can reliably track cryptophyte abundance, does it provide useful information for hetero/mixotrophic HABs?

Percent of Total Phytoplankton Community

Summary

Optical identification of phytoplankton groups in the Chesapeake Bay & applications to regional HAB monitoring

Anticipated Outcomes:

Applications to augmenting HAB monitoring in the Chesapeake Bay using hyperspectral information

How reliable will these applications be given the challenges of "optically complex" estuarine waters

