

NASA Earth Science perspective and public health: global to local efforts to inform Chesapeake Bay resource managers

Stephanie Schollaert Uz

Applied Sciences Manager Goddard Space Flight Center

NASA EARTH FLEET

OPERATING & FUTURE THROUGH 2023

GRACE-FO (2) (DLR) CYGNSS (8) NISTAR, EPIC (DSCOVR/NOAA) CLOUDSAT (CSA) TERRA (JAXA, CSA) AQUA (JAXA, AEB) AURA (NSO, FMI, UKSA) CALIPSO (CNES) GPM (JAXA) LANDSAT 7 (USGS) LANDSAT 8 (USGS) OCO-2 SMAP SUOMI NPP (NOAA) (JAXA)

INVEST/CUBESATS RainCube CSIM-FD CubeRRT **TEMPEST-D** CIRiS HARP CTIM HyTI SNoOPI NACHOS

> (PRE) FORMULATION IMPLEMENTATION PRIMARY OPS

> > EXTENDED OPS

SWOT (CNES) LANDSAT-9 (USGS) SENTINEL-6 Michael Freilich/B (ESA) TROPICS (6) GEOCARB NISAR (ISRO) TSIS-2 PREFIRE (2) GLIMR **ISS INSTRUMENTS** EMIT CLARREO-PF GEDI SAGE III OCO-3 TSIS-1 ECOSTRESS LIS JPSS-2, 3 & 4 INSTRUMENTS

MAIA

TEMPO

PACE (NSO)

ICESAT-2

OMPS-Limb

LIBERA 03.24.20

NASA EARTH FLEET

CLOUDSAT (CSA)

TERRA (JAXA, CSA)

AQUA (JAXA, AEB)

CALIPSO (CNES)

GPM (JAXA)

OCO-2

SMAP

AURA (NSO, FMI, UKSA)

LANDSAT 7 (USGS)

LANDSAT 8 (USGS)

SUOMI NPP (NOAA) (JAXA)

OPERATING & FUTURE THROUGH 2023

INVEST/CUBESATS RainCube CSIM-FD CubeRRT **TEMPEST-D** CIRiS HARP CTIM HyTI SNoOPI NACHOS

> (PRE) FORMULATION IMPLEMENTATION PRIMARY OPS

> > EXTENDED OPS

SWOT (CNES) LANDSAT-9 (USGS) SENTINEL-6 Michael Freilich/B (ESA) GEOCARB MAIA **TEMPO** PACE (NSC **ICESAT-2** GRACE-FO (2) (DLR) CYGNSS (8) NISTAR, EPIC (DSCOVR/NOAA)

TROPICS (6) NISAR (ISRO) TSIS-2 PREFIRE (2)

ISS INSTRUMENTS

EMIT CLARREO-PF GEDI SAGE III OCO-3 TSIS-1 ECOSTRESS LIS

GLIMR

JPSS-2, 3 & 4 INSTRUMENTS

OMPS-Limb LIBERA 03.24.20

Planned for Launch in 2023

Understand and quantify global biogeochemical cycling and ecosystem function in response to anthropogenic and natural environmental variability and change

Four Designated Observable Studies Underway

2017-2027 Decadal Survey for Earth Science & Applications from Space:

Surface Biology and Geology (SBG)

Aerosols, Clouds, Convection and Precipitation (A-CCP)

Mass Change (MC)

Surface Deformation and Change (SDC)

Mission Study on Surface Biology and Geology SBG Science and Applications Objectives from the 5 Decadal Survey Panels

Flows of energy, carbon, water, and nutrients sustaining the life cycle of terrestrial and marine ecosystems Variability of the land surface and the fluxes of water, energy and momentum

Snow

accumulation,

melt, and

spectral albedo

Composition and temperature of volcanic products immediately following eruptions

 Inventory the world's volcanos and geology of exposed land surfaces

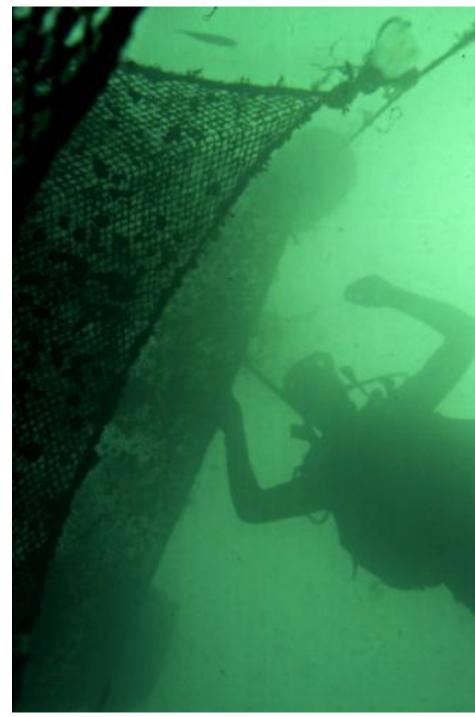
The global carbon cycle and associated climate and ecosystem impacts

Monthly terrestrial CO₂ fluxes at 100 km scale

Functional traits and diversity of terrestrial and aquatic vegetation

Land and water use effects, surface temperatures, evapotranspiration

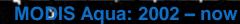
Water balance from headwaters to the continent

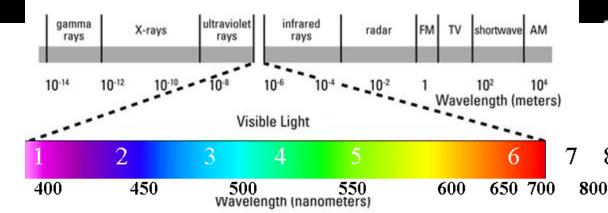

What color is the ocean (or Bay)?

What color is the ocean (or Bay)?

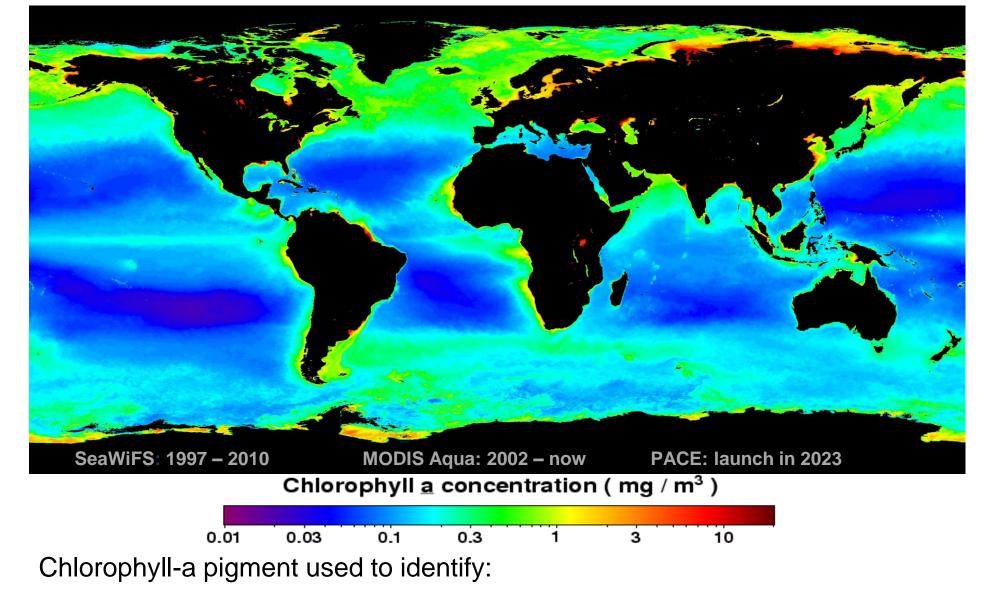
What color is the ocean (or Bay)?

Phytoplankton make a difference!

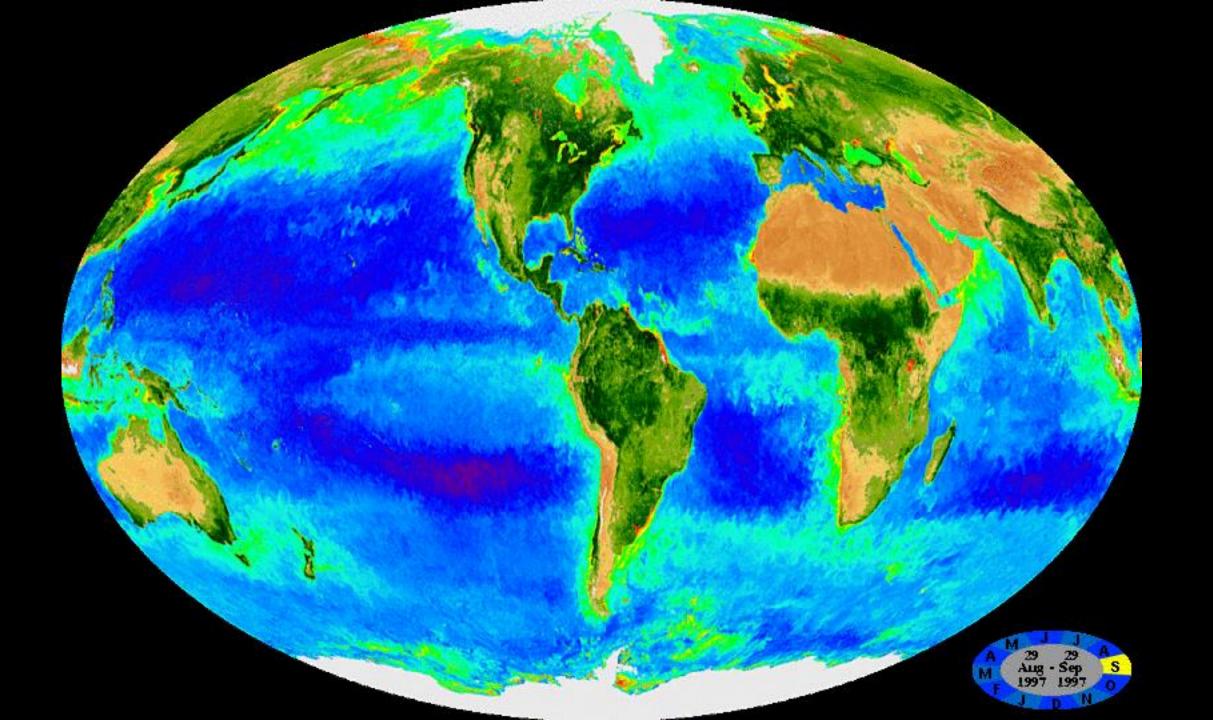



Satellite image of the Black Sea and Eastern Mediterranean Sea

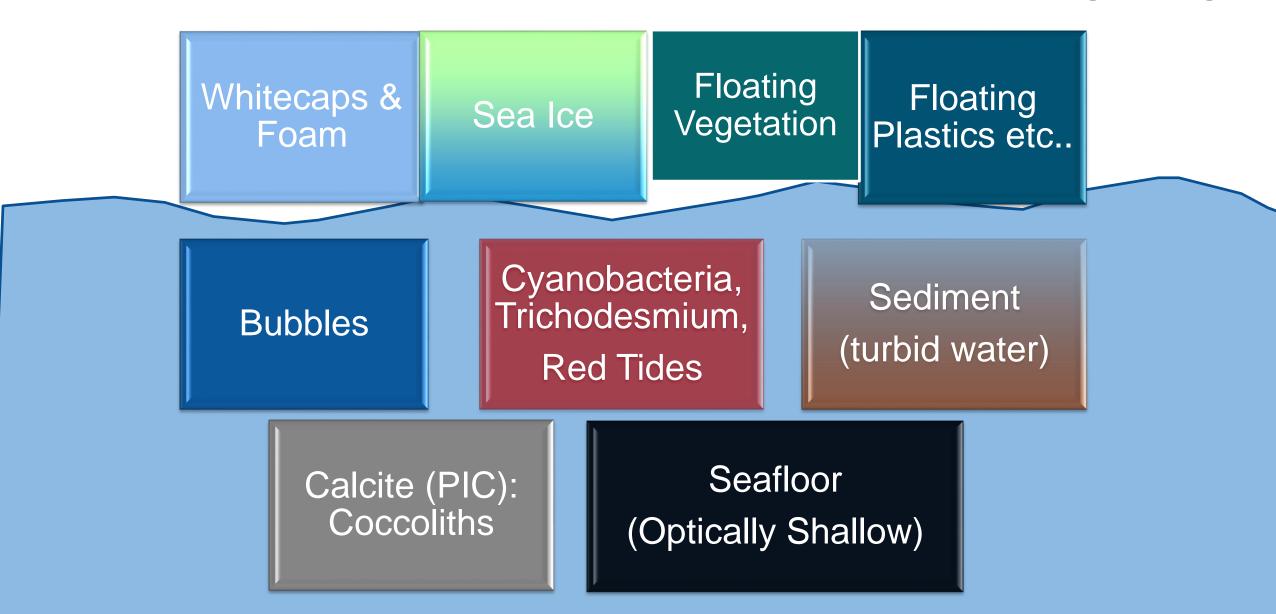
How do we monitor ocean biology from space?


SeaWiFS: 1997 - 2010

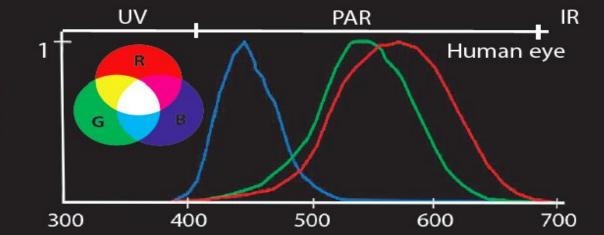
PACE: launch ~ 2023



- Importance of atmospheric correction
- Satellite see 90% atmosphere, 10% ocean
- Bio-optics uses ratios of visible bands (e.g. green/blue)

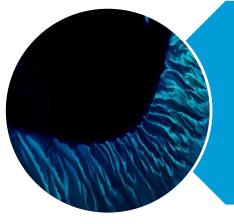


Ecological provinces, physical-biological interaction, phenology, net primary production


Future goals: phytoplankton community composition, biogeochemical cycling

Constituents in water that enhance backscattering of light

What is hyperspectral?


Johnsen et al. 2013

Wavelength (nm)

Higher spectral resolution (hyperspectral) applications

	Biogeochemical modeling	 species composition nutrient cycling export of carbon, nitrogen, etc
	Ecological indicators	 hypoxia eutrophication informed monitoring and assessment
	Ecological processes	 primary producers DMS producers trophic dynamics & food web efficiency
	Global change	 distributional shifts phenology shifts changing trophic interactions
	Fisheries	 finding fish locations/monitoring for aquaculture shellfish food safety
	Harmful Algal Blooms(HABS) and human health	 detecting types of blooms finding probabilistic conditions for toxin production warnings to public
	Environmental reporting	 meeting thresholds species ID detecting anomalies

Trade-offs in Satellite Technology

Trade-off spatially

More narrow spectral bands → Larger bins or pixels
Few broad spectral bands → Smaller pixel

Trade-off temporally

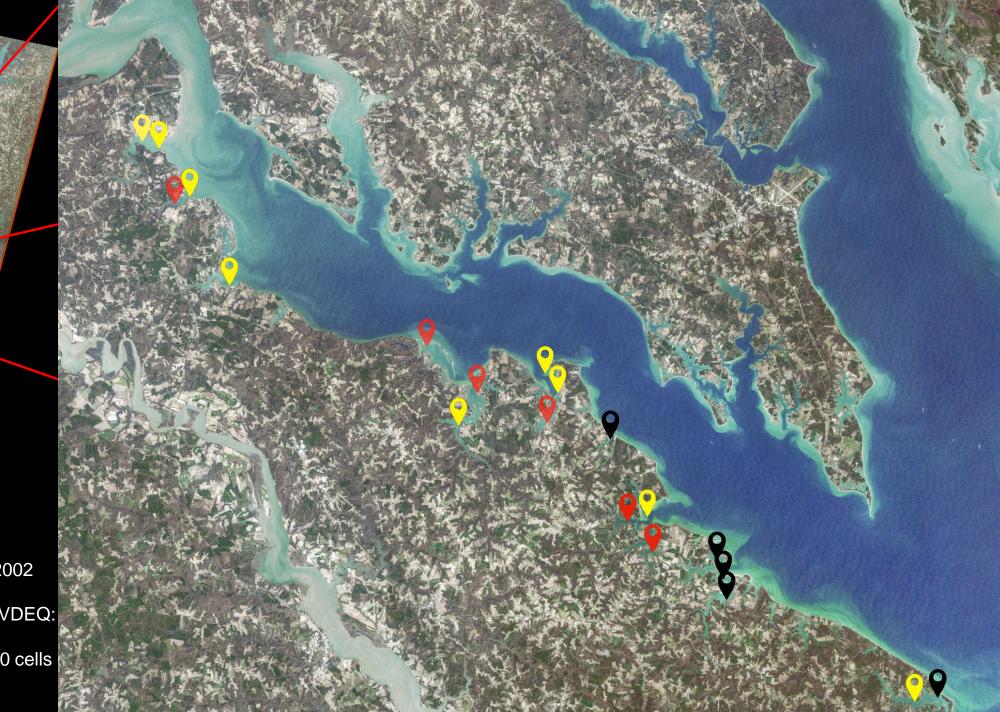
- Larger pixel \rightarrow More frequent revisit
- Smaller pixel \rightarrow Less frequent revisit

Digital Globe, Planet, etc.	 High spatial <1 m Low spectral (RGB uncalibrated) Low temporal
Landsat OLI/Sentinel 2	 Medium spatial (10-30 m), Global coastal Low spectral (3 channels) Low temporal (10-16 day revisit, but glint issues)
MODIS, PACE Ocean Color	 Low spatial (500-1000 m), Global High spectral (5 nm bands) Medium temporal (3-5 day revisit)
Geostationary	 Medium spatial (30 m), Regional High spectral (5 nm bands) High temporal (Hourly)
Aircraft and Drones	 High spatial (1-10 m) Local High spectral (5 nm bands) High temporal possibility depending on cost

Applied Science Working Groups at Goddard

Connecting societal challenges to our basic and applied research to improve life on Earth

Satellite applications in the Chesapeake Bay:


harmful algal blooms, water-borne pathogens

2.2.2

- nutrients, water clarity
- dissolved oxygen (i.e. dead zone)

Landsat 7 scene, February 26, 2002

Dinophysis acuminata by VIMS/VDEQ: low (black) < 10,000 cells L⁻¹ medium (yellow) 10,000 – 50,000 cells high (red) > 50,000 cells L⁻¹

Harmful Algal Bloom detection in the Chesapeake Bay

Wolny, J.L., M.C. Tomlinson, S. Schollaert Uz, T.A. Egerton, J.R. McKay, A. Meredith, K.S. Reece, G.P. Scott, and R.P. Stumpf, 2020, Current and Future Remote Sensing of Harmful Algal Blooms in the Chesapeake Bay to Support the Shellfish Industry, Front. Mar. Sci., doi:10.3389/fmars.2020.00337

High spatial resolution commercial data

©2019 DigitalGlobe NextView License

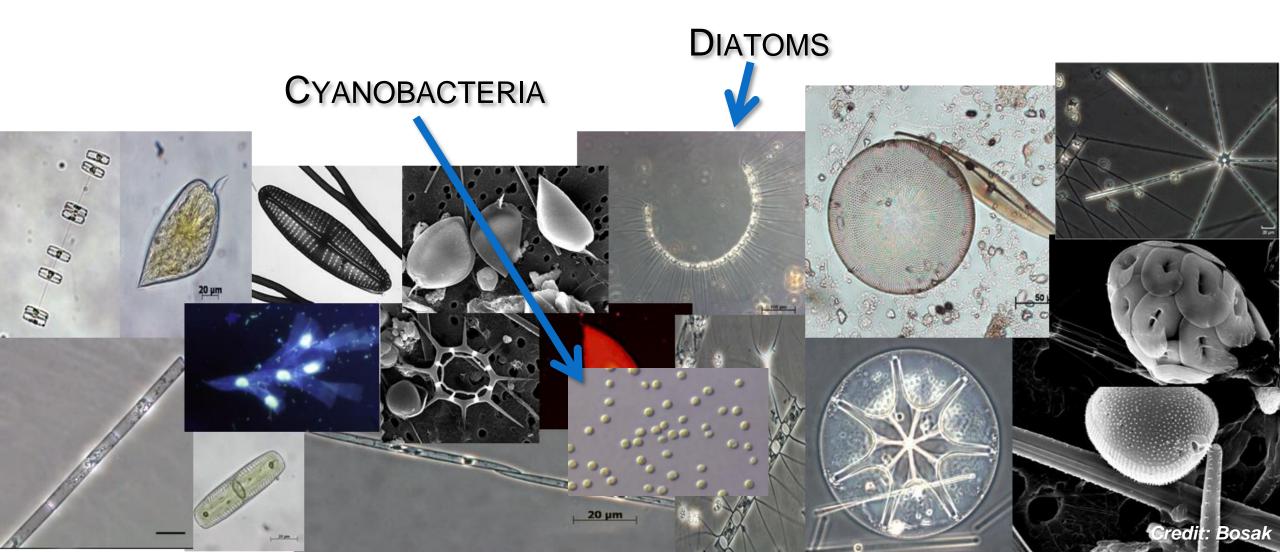
Chesapeake Bay water quality

Working with Maryland Dept of Environment shellfish unit, UMD, NOAA, USDA-ARS to combine sampling of biology, chemistry, physics with optical measurements (in water, above water, satellite)

Aquaculture is a growing industry world-wide

Elevated fecal coliform runoff causes shellfish bed closures

Remote sensing may provide early warning of harmful algal blooms and polluted run-off


Remotely sensed optical techniques are being explored

Developing AI for water quality

Chesapeake Bay phytoplankton classes

Phytoplankton have diverse roles in the marine ecosystem and carbon cycle. Next: how can they be distinguished by their color?

