Estimation of COVID-19 Impact in Virginia

January 27th, 2021
(data current to January 25th-26th)
Biocomplexity Institute Technical report: TR 2021-011
About Us

• Biocomplexity Institute at the University of Virginia
 • Using big data and simulations to understand massively interactive systems and solve societal problems

• Over 20 years of crafting and analyzing infectious disease models
 • Pandemic response for Influenza, Ebola, Zika, and others

Points of Contact

Bryan Lewis
brylew@virginia.edu

Srini Venkatramanan
srini@virginia.edu

Madhav Marathe
marathe@virginia.edu

Chris Barrett
ChrisBarrett@virginia.edu

Biocomplexity COVID-19 Response Team

Overview

Goal: Understand impact of COVID-19 mitigations in Virginia

Approach:
- Calibrate explanatory mechanistic model to observed cases
- Project based on scenarios for next 4 months
- Consider a range of possible mitigation effects in "what-if" scenarios

Outcomes:
- Ill, Confirmed, Hospitalized, ICU, Ventilated, Death
- Geographic spread over time, case counts, healthcare burdens
Key Takeaways

Projecting future cases precisely is impossible and unnecessary. Even without perfect projections, we can confidently draw conclusions:

• **Case rate growth in Virginia has slowed but remains high**

• VA mean weekly incidence down sharply 54/100K from 72/100K, as national levels continued to decline (to 45/100K from 54/100K)

• Projections are mixed across commonwealth with some short-term growth at state level mainly driven by central section of the state

• Recent updates:
 • Adjusted projection window to account for shifting trends
 • Scenarios based on past control levels (best and fatigued) and emerging new variants with enhanced transmissibility
 • Further updates to vaccination schedules, accounts for partial protection from first dose and merges observed doses with goals for future vaccine administration

• The situation is changing rapidly. Models will be updated regularly.
Situation Assessment
Case Rate (per 100k) by VDH District

Surging Rates subside and start declining

- Majority of districts have decreasing rates
- Rates remain high in many districts
Test Positivity by VDH District

Weekly changes in test positivity by district

- Increasing levels in many districts throughout the commonwealth with many districts above 10% for several weeks
- Slight reduction of 115 counties, down from 125, over 10% (as of Jan 20th)

County level test positivity rates for RT-PCR tests.

- **Green**: Test positivity <5.0% (or with <20 tests in past 14 days)
- **Yellow**: Test positivity 5.0%-10.0% (or with <500 tests and <2000 tests/100k and >10% positivity over 14 days)
- **Red**: >10.0% and not meeting the criteria for “Green” or “Yellow”

https://data.cms.gov/stories/s/q5r5-gjyu
District Trajectories

Goal: Define epochs of a Health District’s COVID-19 incidence to characterize the current trajectory

Method: Find recent peak and use hockey stick fit to find inflection point afterwards, then use this period’s slope to define the trajectory

<table>
<thead>
<tr>
<th>Trajectory</th>
<th>Description</th>
<th>Weekly Case Rate (per 100K) bounds</th>
<th># Districts (prev week)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declining</td>
<td>Sustained decreases following a recent peak</td>
<td>below -0.9</td>
<td>20 (10)</td>
</tr>
<tr>
<td>Plateau</td>
<td>Steady level with minimal trend up or down</td>
<td>above -0.9 and below 0.5</td>
<td>2 (1)</td>
</tr>
<tr>
<td>Slow Growth</td>
<td>Sustained growth not rapid enough to be considered a Surge</td>
<td>above 0.5 and below 2.5</td>
<td>7 (11)</td>
</tr>
<tr>
<td>In Surge</td>
<td>Currently experiencing sustained rapid and significant growth</td>
<td>2.5 or greater</td>
<td>6 (13)</td>
</tr>
</tbody>
</table>

Hockey stick fit

Portsmouth

[Graph showing hockey stick fit with trajectories and weekly case rates]
District Trajectories – last 10 weeks

<table>
<thead>
<tr>
<th>Status</th>
<th># Districts (prev week)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declining</td>
<td>20 (10)</td>
</tr>
<tr>
<td>Plateau</td>
<td>2 (1)</td>
</tr>
<tr>
<td>Slow Growth</td>
<td>7 (11)</td>
</tr>
<tr>
<td>In Surge</td>
<td>6 (13)</td>
</tr>
</tbody>
</table>

Curve shows smoothed case rate (per 100K)
Trajectories of states in label & chart box
Case Rate curve colored by Reproductive
Estimating Daily Reproductive Number

Jan 25th Estimates

<table>
<thead>
<tr>
<th>Region</th>
<th>Date Confirmed R<sub>e</sub></th>
<th>Date Confirmed Diff Last Week</th>
</tr>
</thead>
<tbody>
<tr>
<td>State-wide</td>
<td>0.809</td>
<td>-0.340</td>
</tr>
<tr>
<td>Central</td>
<td>0.820</td>
<td>-0.398</td>
</tr>
<tr>
<td>Eastern</td>
<td>0.942</td>
<td>-0.167</td>
</tr>
<tr>
<td>Far SW</td>
<td>0.698</td>
<td>-0.109</td>
</tr>
<tr>
<td>Near SW</td>
<td>0.746</td>
<td>-0.351</td>
</tr>
<tr>
<td>Northern</td>
<td>0.708</td>
<td>-0.636</td>
</tr>
<tr>
<td>Northwest</td>
<td>0.910</td>
<td>-0.010</td>
</tr>
</tbody>
</table>

Methodology

- Wallinga-Teunis method (EpiEstim³) for cases by confirmation date
- Serial interval: 6 days (2 day std dev)
- Using Confirmation date since due to increasingly unstable estimates from onset date due to backfill

Changes in Case Detection

<table>
<thead>
<tr>
<th>Timeframe (weeks)</th>
<th>Mean days</th>
<th>% difference from overall mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>May (17-21)</td>
<td>5.7</td>
<td>-21%</td>
</tr>
<tr>
<td>June (22-25)</td>
<td>5.8</td>
<td>-19%</td>
</tr>
<tr>
<td>July (26-30)</td>
<td>6.2</td>
<td>-14%</td>
</tr>
<tr>
<td>Aug (31-34)</td>
<td>4.9</td>
<td>-32%</td>
</tr>
<tr>
<td>Sept (35-38)</td>
<td>4.6</td>
<td>-37%</td>
</tr>
<tr>
<td>Oct (39-43)</td>
<td>4.5</td>
<td>-38%</td>
</tr>
<tr>
<td>Nov (44-47)</td>
<td>4.5</td>
<td>-38%</td>
</tr>
<tr>
<td>Dec (48-49)</td>
<td>4.1</td>
<td>-43%</td>
</tr>
<tr>
<td>Jan (00-01)</td>
<td>4.1</td>
<td>-47%</td>
</tr>
<tr>
<td>Overall (13-01)</td>
<td>7.2</td>
<td>--</td>
</tr>
</tbody>
</table>

Test positivity vs. Onset to Diagnosis

- Positivity remains high but is down overall

Days from Onset to Diagnosis and Test Positivity - Weekly

- Testing levels show slight dip after strong rebound following the holidays

Accessed 9:00am January 27, 2021
https://www.vdh.virginia.gov/coronavirus/
State level mask usage as reported via Facebook surveys has shown steady increase over past three months
- ~88% (early Nov) to ~94% (mid Jan)
- Some variance across the commonwealth
- ~3000 daily responses from VA

Data Source: https://covidcast.cmu.edu
Vaccine Acceptance

Facebook administered survey:
Percent of people who would definitely or probably choose to receive a COVID vaccine if offered today

VA typically achieves 50-60% coverage with seasonal influenza vaccine (typically over the course of 3 months)

COVIDcast Data Explorer
Source: https://covidcast.cmu.edu
Health Care Worker Prevalence (per 100K)

Case Rates among health workers compared to population in last week

• Based on census counts of patient-facing health care workers (Practitioners and Technologists)
• Prevalence rates for week ending Jan 9th
• HCW burden remains high in some Eastern counties as well as Southwest
Recent Changes in Race and Ethnicity Rates (per 100k)

- Two week change in population level rates
- Black, Latinx and 2 or more races populations have much higher changes in rates; disparity is more pronounced in some districts than others
- Based on 2019 census race-ethnicity data by county
Race and Ethnicity cases per 100K

Rates per 100K of each Racial-Ethnic population by Health District
- Each Health District’s Racial-Ethnic population is plotted by their Hospitalization and Case Rate
- Points are sized based on their overall population size
- Overlapping labels removed for clarity
Impact across Density and Income

All zip codes show back into growth, wealthiest zip code now lags the rest significantly

Full evolution of pandemic, shows shifts from denser and wealthier zip codes to poorer and less dense zip codes
Other State Comparisons

Trajectories of States

• After a short rebound most states are plateauing (29) or declining (21)

Virginia and her neighbors

• VA growth has slowed, but is one of 3 states with slow growth
• VA and her neighbors remain relatively active compared to the rest of the US
Zip code level weekly Case Rate (per 100K)

Case Rates in the last week by zip code

- Fewer prisons are in the top ten, most prisons seem to have intense rates for 2 to 3 weeks
- Concentrations of high rates in central and northwest regions
- Some counts are low and suppressed to protect anonymity, those are shown in white

<table>
<thead>
<tr>
<th>Rank</th>
<th>Zip Code Name</th>
<th>Prevalence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>23821 Alberta *</td>
<td>14,420</td>
</tr>
<tr>
<td>2</td>
<td>24517 Altavista</td>
<td>5,270</td>
</tr>
<tr>
<td>3</td>
<td>23964 Red Oak</td>
<td>5,140</td>
</tr>
<tr>
<td>4</td>
<td>24263 Jonesville</td>
<td>4,550</td>
</tr>
<tr>
<td>5</td>
<td>23830 Carson</td>
<td>4,060</td>
</tr>
<tr>
<td>6</td>
<td>22602 Winchester</td>
<td>3,720</td>
</tr>
<tr>
<td>7</td>
<td>23922 Burkeville*</td>
<td>3,540</td>
</tr>
<tr>
<td>8</td>
<td>22967 Roseland</td>
<td>3,530</td>
</tr>
<tr>
<td>9</td>
<td>22656 Stephenson</td>
<td>3,420</td>
</tr>
<tr>
<td>10</td>
<td>24571 Lynch Station</td>
<td>3,370</td>
</tr>
</tbody>
</table>

* Denotes zip codes with state prisons.

Only includes zips with pop ≥ 1000 and no supp. data.
Risk of Exposure by Group Size

Case Prevalence in the last week by zip code used to calculate risk of encountering someone infected in a gathering of randomly selected people (group size 25)

- Assumes 3 undetected infections per confirmed case (ascertainment rate from recent seroprevalence survey)
- On left, minimum size of a group with a 50% chance an individual is infected by zip code (e.g., in a group of 20 in Staunton, there is a 50% chance someone will be infected)
- Some zip codes have high likelihood of exposure even in groups of 25

![Map showing risk of exposure by group size](image)

Based on zip code point prevalence for week ending 2021-01-23

28-Jan-21
New variants of SARS-CoV2

Emerging new variants with increased transmissibility limited evidence of higher severity

• Evolution expected when virus under selective pressure

Lineage B.1.1.7

• B.1.1.7 has been detected in Virginia as well as in at least 293 cases across 25 states as of Jan 25th
• Given observed growth rate in UK and Denmark, estimate it will predominate in the US by mid-March
• Recent study suggests this variant may have higher mortality

Lineage B.1.351

• Emerging strain in South Africa is also of concern for vaccine escape
• Experiments have demonstrated reduced potency of convalescent sera and monoclonal antibodies
• Moderna vaccine demonstrated to have robust response to this variant and thus likely to remain highly effective

Lineage P.1 (similar mutations as in B.1.1.7 and B.1.351)

• First case reported in Minnesota on Monday Jan 25th
• Emerging strain in the Amazon also shows potential of escaping existing immunity
• Resurgence of hospitalizations in Manaus, Brazil continues this despite estimated ¾ of the population infected
Model Update – Adaptive Fitting
Adaptive Fitting Approach

Each county fit precisely, with recent trends used for future projection

- Allows history to be precisely captured, and used to guide bounds on projections

Model: An alternative use of the same meta-population model, PatchSim

- Allows for future “what-if” Scenarios to be layered on top of calibrated model
- Eliminates connectivity between patches, to allow calibration to capture the increasingly unsynchronized epidemic

External Seeding: Steady low-level importation

- Widespread pandemic eliminates sensitivity to initial conditions
- Uses steady 1 case per 10M population per day external seeding
Using Ensemble Model to Guide Projections

An ensemble methodology that combines the Adaptive Fitting and machine learning and statistical models has been developed and refined

• **Models**: Adaptive Fitting, ARIMA, LSTM, AR, spatially driven AR, Kalman Filters (ENKF)

• This approach facilitates the use of other data streams (weather, mobility, etc.)

• Ensemble provides scaffolding for the Adaptive Fitting’s short-term projections
Seroprevalence updates to model design

Several seroprevalence studies provide better picture of how many actual infections have occurred

- Virginia Serology Study estimated 2.4% of Virginians estimated infected (as of Aug 15th)
- CDC Nationwide Commercial Laboratory Seroprevalence Survey estimated 4.6% [3.0% – 6.6%] seroprevalence as of Nov 12th – 26th up from 4.1% a month earlier

These findings are equivalent to an ascertainment ratio of ~3x, with bounds of (1x to 7x)

- Thus for 3x there are 3 total infections in the population for every confirmed case
- Uncertainty design has been shifted to these bounds (previously higher ascertainment was as consistent earlier in the pandemic were being used)
Calibration Approach

• Data:
 • County level case counts by date of onset (from VDH)
 • Confirmed cases for model fitting

• Calibration: fit model to observed data and ensemble’s forecast
 • Tune transmissibility across ranges of:
 • Duration of incubation (5-9 days), infectiousness (3-7 days)
 • Undocumented case rate (1x to 7x) guided by seroprevalence studies
 • Detection delay: exposure to confirmation (4-12 days)
 • Approach captures uncertainty, but allows model to precisely track the full trajectory of the outbreak

• Project: future cases and outcomes generated using the collection of fit models run into the future
 • Mean trend from last 7 days of observed cases and first week of ensemble’s forecast used
 • Outliers removed based on variances in the previous 3 weeks
 • 2 week interpolation to smooth transitions in rapidly changing trajectories
Scenarios – Seasonal Effects

• Variety of factors continue to drive transmission rates
 • Seasonal impact of weather patterns, travel and gatherings related to holidays, fatigue with infection control practices

• Plausible levels of transmission can be bounded by past experience
 • Assess transmission levels at the county level since May 2020
 • Use the highest and lowest levels experienced (excluding outliers) as plausible bounds for levels of control achievable
 • Transition from current levels of projection to the new levels over 2 months

• New planning Scenarios:
 • Best of the Past: Lowest level of transmission (10th percentile)
 • Fatigued Control: Highest level of transmission (95th percentile) increased by additional 5%
Scenarios – Novel Variants

• Several novel variants of SARS-CoV2 are being tracked
 • Some are more transmissible, some may escape immunity from previous natural infection and/or vaccination, others may be more severe

• New Variant B.1.1.7 is best understood and is in Virginia
 • Several different studies have estimated the increase in transmission to be 30-55%, we use 50% increase from the current baseline projection
 • Gradually replace the current transmissibility with the augmented transmissibility over the course of 2 months as estimated by a recent MMWR report from CDC

• Additional planning Scenarios:
 • NewVariants: Current projected transmissibility increases gradually over 4 months to level 50% more transmissible
Scenarios – Vaccines

• Vaccination has started, and efforts are underway to increase its pace
 • Exact achievable rollouts and level of coverage are unknown

• Vaccine efficacy varies over course of vaccine
 • FDA EUAs show 50% efficacy achieved 2 weeks after 1st dose, and 95% 2 weeks after 2nd
 • Assuming 3.5 week (average of Pfizer and Moderna) gap between doses

• Vaccine hesitancy poses a future problem
 • Currently demand far outpaces supply so we assume all courses will be administered until we reach the hesitancy threshold, for 50% with 25M per month this is reached in Aug 2021.

Current rollouts and scenarios inspired by MIDAS Network COVID-19 Scenario Hub: https://github.com/midas-network/covid19-scenario-modeling-hub

US Vaccination Rates

Line represents 1M doses a day goal
Scenarios – Vaccines

- Administration schedule uses actual administration and expected for the future
 - Use history of state-specific doses administered as captured by Bloomberg (up to Jan 24)
 - Future courses based on current goals and consensus
 - **Rate**: 25M started per month in US, ~250 /100K a day
 - **Location**: Per capita distribution across all counties
 - Rates in VA for Jan 17-24 are ~420 doses administered /100K a day (some are 2nd doses)

Scenarios – Seasonal Effects and Vaccines

Three scenarios combine these seasonal effects and use the updated vaccine schedule

• **Adaptive**: No seasonal effects from base projection
 - If things continue as they are

• **Adaptive-FatigueControl**: Fatigued control seasonal effects
 - If we revert to slightly worst transmission experienced in last 6 months

• **Adaptive-BestPastControl**: Best of the past control seasonal effects
 - If we revert to best control experienced in last 6 months

• **Adaptive-NewVariants**: Boosting of transmissibility from the emergence and eventual ubiquity of more transmissible variants
 - If new variants begin to predominate and boost transmission, this assumes current seasonal affects remain the same (eg like Adaptive)

• Counterfactuals with no vaccine (“NoVax”) are provided for comparison purposes
Model Results
Outcome Projections

Confirmed cases
Virginia Daily Confirmed - Comparison

- Adaptive-FatigueControl
- Adaptive-BestPastControl
- Adaptive-NewVariants
- Adaptive

Estimated Hospital Occupancy

Daily Deaths
Virginia Daily Death - Comparison

Daily Hospitalized
Virginia Daily Hospitalized - Comparison

28-Jan-21
District Level Projections: Adaptive

Adaptive projections by District

• Projections that best fit recent trends
• Daily confirmed cases rate (per 100K) by Region (grey with 7-day average in black) with simulation colored by scenario
District Level Projections: Adaptive-BestPastControl

Adaptive projections by District

- Projections that best fit recent trends
- Daily confirmed cases rate (per 100K) by Region (grey with 7-day average in black) with simulation colored by scenario
District Level Projections: Adaptive-FatigueControl

Adaptive projections by District

• Projections that best fit recent trends
• Daily confirmed cases rate (per 100K) by Region (grey with 7-day average in black) with simulation colored by scenario
District Level Projections: Adaptive-NewVariants

Adaptive projections by District

- Projections that best fit recent trends
- Daily confirmed cases rate (per 100K) by Region (grey with 7-day average in black) with simulation colored by scenario
Hospital Demand and Bed Capacity by Region

Capacities* by Region – Adaptive-FatigueControl
COVID-19 capacity ranges from 80% (dots) to 120% (dash) of total beds

If Adaptive-FatigueControl scenario persists:
- Some regions approach initial bed capacity this winter
- Surge bed capacity is unlikely to be reached in coming 4 months

* Assumes average length of stay of 8 days

<table>
<thead>
<tr>
<th>Week Ending</th>
<th>Adaptive</th>
<th>Adaptive-Best Past Control</th>
<th>Adaptive-Fatigued Control</th>
<th>Adaptive-New Variants</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/24/21</td>
<td>41,663</td>
<td>41,660</td>
<td>41,659</td>
<td>41,660</td>
</tr>
<tr>
<td>1/31/21</td>
<td>41,820</td>
<td>41,822</td>
<td>41,837</td>
<td>41,972</td>
</tr>
<tr>
<td>2/7/21</td>
<td>43,748</td>
<td>43,670</td>
<td>43,766</td>
<td>44,999</td>
</tr>
<tr>
<td>2/14/21</td>
<td>45,117</td>
<td>44,903</td>
<td>45,134</td>
<td>48,730</td>
</tr>
<tr>
<td>2/21/21</td>
<td>45,721</td>
<td>45,170</td>
<td>45,974</td>
<td>52,764</td>
</tr>
<tr>
<td>2/28/21</td>
<td>44,900</td>
<td>42,669</td>
<td>46,529</td>
<td>55,822</td>
</tr>
<tr>
<td>3/7/21</td>
<td>42,419</td>
<td>37,356</td>
<td>46,612</td>
<td>57,075</td>
</tr>
<tr>
<td>3/14/21</td>
<td>38,396</td>
<td>30,630</td>
<td>45,550</td>
<td>56,326</td>
</tr>
<tr>
<td>3/21/21</td>
<td>33,581</td>
<td>23,793</td>
<td>44,381</td>
<td>54,367</td>
</tr>
<tr>
<td>3/28/21</td>
<td>28,716</td>
<td>17,572</td>
<td>42,901</td>
<td>50,487</td>
</tr>
<tr>
<td>4/4/21</td>
<td>23,803</td>
<td>12,297</td>
<td>41,007</td>
<td>44,623</td>
</tr>
<tr>
<td>4/11/21</td>
<td>19,175</td>
<td>8,211</td>
<td>39,219</td>
<td>38,225</td>
</tr>
</tbody>
</table>

Weekly confirmed cases
Medical Resource Demand Dashboard

https://nssac.bii.virginia.edu/covid-19/vmrddash/
Key Takeaways

Projecting future cases precisely is impossible and unnecessary. Even without perfect projections, we can confidently draw conclusions:

• **Case rate growth in Virginia has slowed but remains high**

• VA mean weekly incidence down sharply 54/100K from 72/100K, as national levels continued to decline (to 45/100K from 54/100K)

• Projections are mixed across commonwealth with some short-term growth at state level mainly driven by central section of the state

• Recent updates:
 • Adjusted projection window to account for shifting trends
 • Scenarios based on past control levels (best and fatigued) and emerging new variants with enhanced transmissibility
 • Further updates to vaccination schedules, accounts for partial protection from first dose and merges observed doses with goals for future vaccine administration

• The situation is changing rapidly. Models will be updated regularly.
References

Biocomplexity page for data and other resources related to COVID-19: https://covid19.biocomplexity.virginia.edu/
Questions?

Biocomplexity COVID-19 Response Team

Aniruddha Adiga, Abhijin Adiga, Hannah Baek, Chris Barrett, Golda Barrow, Richard Beckman, Parantapa Bhattacharya, Andrei Bura, Jiangzhuo Chen, Patrick Corbett, Clark Cucinell, Allan Dickerman, Stephen Eubank, Arindam Fadikar, Joshua Goldstein, Stefan Hoops, Ben Hurt, Sallie Keller, Ron Kenyon, Brian Klahn, Gizem Korkmaz, Vicki Lancaster, Bryan Lewis, Dustin Machi, Chunhong Mao, Achla Marathe, Madhav Marathe, Fanchao Meng, Henning Mortveit, Mark Orr, Joseph Outten, Akhil Peddireddy, Przemyslaw Porebski, SS Ravi, Erin Raymond, Jose Bayoan Santiago Calderon, James Schlitt, Aaron Schroeder, Stephanie Shipp, Samarth Swarup, Alex Telionis, Srinivasan Venkatramanan, Anil Vullikanti, James Walke, Amanda Wilson, Dawen Xie

Points of Contact

Bryan Lewis
brylew@virginia.edu

Srini Venkatramanan
srini@virginia.edu

Madhav Marathe
marathe@virginia.edu

Chris Barrett
ChrisBarrett@virginia.edu
Supplemental Slides
Estimating Daily Reproductive Number

Jan 16th Estimates

<table>
<thead>
<tr>
<th>Region</th>
<th>Date of Onset</th>
<th>Date Onset Diff Last Week</th>
</tr>
</thead>
<tbody>
<tr>
<td>State-wide</td>
<td>0.842</td>
<td>-0.216</td>
</tr>
<tr>
<td>Central</td>
<td>0.929</td>
<td>-0.182</td>
</tr>
<tr>
<td>Eastern</td>
<td>0.835</td>
<td>-0.235</td>
</tr>
<tr>
<td>Far SW</td>
<td>0.763</td>
<td>-0.167</td>
</tr>
<tr>
<td>Near SW</td>
<td>0.827</td>
<td>-0.210</td>
</tr>
<tr>
<td>Northern</td>
<td>0.809</td>
<td>-0.300</td>
</tr>
<tr>
<td>Northwest</td>
<td>0.876</td>
<td>-0.053</td>
</tr>
</tbody>
</table>

Methodology

- Wallinga-Teunis method (EpiEstim³) for cases by date of onset
- Serial interval: 6 days (2 day std dev)
- Recent estimates may be unstable due to backfill

Agent-based Model (ABM)

EpiHiper: Distributed network-based stochastic disease transmission simulations

- Assess the impact on transmission under different conditions
- Assess the impacts of contact tracing

Synthetic Population

- Census derived age and household structure
- Time-Use survey driven activities at appropriate locations

Detailed Disease Course of COVID-19

- Literature based probabilities of outcomes with appropriate delays
- Varying levels of infectiousness
- Hypothetical treatments for future developments
ABM Social Distancing Rebound Study Design

Study of "Stay Home" policy adherence

• Calibration to current state in epidemic

• Implement “release” of different proportions of people from "staying at home"

Calibration to Current State

• Adjust transmission and adherence to current policies to current observations

• For Virginia, with same seeding approach as PatchSim

Impacts on Reproductive number with release

• After release, spike in transmission driven by additional interactions at work, retail, and other

• At 25% release (70-80% remain compliant)

• Translates to 15% increase in transmission, which represents a 1/6th return to pre-pandemic levels