Analysis of COVID-19 in Virginia

July 7th, 2021
(data current to July 5th – June 7th)
Biocomplexity Institute Technical report: TR 2021-076
About Us

• Biocomplexity Institute at the University of Virginia
 • Using big data and simulations to understand massively interactive systems and solve societal problems
• Over 20 years of crafting and analyzing infectious disease models
 • Pandemic response for Influenza, Ebola, Zika, and others

Points of Contact

Bryan Lewis
brylew@virginia.edu

Srini Venkatramanan
srini@virginia.edu

Madhav Marathe
marathe@virginia.edu

Chris Barrett
ChrisBarrett@virginia.edu

Model Development, Outbreak Analytics, and Delivery Team
Overview

• **Goal:** Understand impact of COVID-19 mitigations in Virginia

• **Approach:**
 • Calibrate explanatory mechanistic model to observed cases
 • Project based on scenarios for next 4 months
 • Consider a range of possible mitigation effects in "what-if" scenarios

• **Outcomes:**
 • Ill, Confirmed, Hospitalized, ICU, Ventilated, Death
 • Geographic spread over time, case counts, healthcare burdens
Key Takeaways

Projecting future cases precisely is impossible and unnecessary. Even without perfect projections, we can confidently draw conclusions:

- **Case rates in Virginia have slightly risen, some districts with moderate growth**
- VA mean weekly incidence slightly up to 2.1/100K from 1.9/100K, US flat at 4.2/100K (from 3.9/100K)
- Vaccination rates continue to be slow while measured acceptance among unvaccinated remains steady
- Delta variant continues to grow, causing surges in other states and increased hospitalizations

The situation continues to change. Models continue to be updated regularly.
Situation Assessment
Case Rates (per 100k) and Test Positivity

County level test positivity from RT-PCR tests.

- **Green**: <5.0% (or with <20 tests in past 14 days)
- **Yellow**: 5.0%-10.0% (or with <500 tests and <2000 tests/100k and >10% positivity over 14 days)
- **Red**: >10.0% (and not “Green” or “Yellow”)

https://data.cms.gov/stories/s/q5r5-giyu
District Trajectories

Goal: Define epochs of a Health District’s COVID-19 incidence to characterize the current trajectory

Method: Find recent peak and use hockey stick fit to find inflection point afterwards, then use this period’s slope to define the trajectory

<table>
<thead>
<tr>
<th>Trajectory</th>
<th>Description</th>
<th>Weekly Case Rate (per 100K) bounds</th>
<th># Districts (prev week)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declining</td>
<td>Sustained decreases following a recent peak</td>
<td>below -0.9</td>
<td>2 (4)</td>
</tr>
<tr>
<td>Plateau</td>
<td>Steady level with minimal trend up or down</td>
<td>above -0.9 and below 0.5</td>
<td>23 (30)</td>
</tr>
<tr>
<td>Slow Growth</td>
<td>Sustained growth not rapid enough to be considered a Surge</td>
<td>above 0.5 and below 2.5</td>
<td>9 (1)</td>
</tr>
<tr>
<td>In Surge</td>
<td>Currently experiencing sustained rapid and significant growth</td>
<td>2.5 or greater</td>
<td>1 (0)</td>
</tr>
</tbody>
</table>
District Trajectories – last 10 weeks

<table>
<thead>
<tr>
<th>Status</th>
<th># Districts (prev week)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declining</td>
<td>2 (4)</td>
</tr>
<tr>
<td>Plateau</td>
<td>23 (30)</td>
</tr>
<tr>
<td>Slow Growth</td>
<td>9 (1)</td>
</tr>
<tr>
<td>In Surge</td>
<td>1 (0)</td>
</tr>
</tbody>
</table>

Curve shows smoothed case rate (per 100K)
Trajectories of states in label & chart box
Case Rate curve colored by Reproductive
Estimating Daily Reproductive Number

July 6th Estimates

<table>
<thead>
<tr>
<th>Region</th>
<th>Date Confirmed R_e</th>
<th>Date Confirmed Diff Last Week</th>
</tr>
</thead>
<tbody>
<tr>
<td>State-wide</td>
<td>0.863</td>
<td>-0.258</td>
</tr>
<tr>
<td>Central</td>
<td>1.091</td>
<td>-0.089</td>
</tr>
<tr>
<td>Eastern</td>
<td>0.942</td>
<td>-0.076</td>
</tr>
<tr>
<td>Far SW</td>
<td>0.969</td>
<td>-0.147</td>
</tr>
<tr>
<td>Near SW</td>
<td>0.398</td>
<td>-0.812</td>
</tr>
<tr>
<td>Northern</td>
<td>0.814</td>
<td>-0.285</td>
</tr>
<tr>
<td>Northwest</td>
<td>1.003</td>
<td>0.031</td>
</tr>
</tbody>
</table>

Methodology

- Wallinga-Teunis method (EpiEstim) for cases by confirmation date
- Serial interval: updated to discrete distribution from observations (mean=4.3, Flaxman et al, Nature 2020)
- Using Confirmation date since due to increasingly unstable estimates from onset date due to backfill

Changes in Case Detection

<table>
<thead>
<tr>
<th>Timeframe (weeks)</th>
<th>Mean days</th>
<th>% difference from overall mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>July (26-30)</td>
<td>6.22</td>
<td>8.89%</td>
</tr>
<tr>
<td>Aug (31-34)</td>
<td>4.87</td>
<td>-14.73%</td>
</tr>
<tr>
<td>Sept (35-38)</td>
<td>4.57</td>
<td>-20.00%</td>
</tr>
<tr>
<td>Oct (39-43)</td>
<td>4.48</td>
<td>-21.52%</td>
</tr>
<tr>
<td>Nov (44-47)</td>
<td>4.54</td>
<td>-20.46%</td>
</tr>
<tr>
<td>Dec (48-49)</td>
<td>4.29</td>
<td>-24.91%</td>
</tr>
<tr>
<td>Jan (00-04)</td>
<td>3.96</td>
<td>-30.58%</td>
</tr>
<tr>
<td>Feb (05-08)</td>
<td>3.5</td>
<td>-38.63%</td>
</tr>
<tr>
<td>Mar (09-13)</td>
<td>3.64</td>
<td>-36.17%</td>
</tr>
<tr>
<td>Apr (14-17)</td>
<td>3.22</td>
<td>-43.52%</td>
</tr>
<tr>
<td>May (18-21)</td>
<td>3.46</td>
<td>-39.48%</td>
</tr>
<tr>
<td>June (22-)</td>
<td>3.66</td>
<td>-35.82%</td>
</tr>
<tr>
<td>Overall (13 - 19)</td>
<td>5.71</td>
<td>--</td>
</tr>
</tbody>
</table>

![Days from Onset to Diagnosis and Test Positivity - Weekly](chart.png)

Weeks (WW-YYYY)
Vaccination Administration Slows

Regional Vaccine courses initiated per day:
- Total counts of first dose of vaccines across regions
- Recent rise due to opening of vaccinations to 12-16 year olds

Shipments have slowed with decreased demand
Vaccinations Shift to Younger Populations

Central

Far SW

Northern

Eastern

Near SW

Northwest

University of Virginia
Biocomplexity Institute

8-Jul-21
Vaccination Acceptance by Region

Corrections to surveys:
- Facebook administered survey is timely and broad, but biased by who accesses Facebook and answers the survey
- Correction approach:
 - Calculate an over-reporting fraction based on reported vaccinations compared to VDH administration data
 - Cross-validate coarse corrections against HPS survey at the state level and corrected in same manner

<table>
<thead>
<tr>
<th>Region</th>
<th>COVIDcast accepting corrected</th>
<th>COVIDcast accepting corrected (last week)</th>
<th>VDH proportion vaccinated</th>
<th>COVIDcast reported vaccinated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central</td>
<td>66%</td>
<td>68%</td>
<td>58%</td>
<td>82%</td>
</tr>
<tr>
<td>Eastern</td>
<td>62%</td>
<td>58%</td>
<td>52%</td>
<td>84%</td>
</tr>
<tr>
<td>Far SW</td>
<td>60%</td>
<td>53%</td>
<td>41%</td>
<td>66%</td>
</tr>
<tr>
<td>Near SW</td>
<td>61%</td>
<td>60%</td>
<td>51%</td>
<td>75%</td>
</tr>
<tr>
<td>Northern</td>
<td>78%</td>
<td>80%</td>
<td>67%</td>
<td>88%</td>
</tr>
<tr>
<td>Northwest</td>
<td>67%</td>
<td>67%</td>
<td>58%</td>
<td>79%</td>
</tr>
</tbody>
</table>

Grey Bar: Survey measured and corrected acceptance
Green Bar: Proportion of eligible population administered a vaccine
Dots: Proportion administered at least one dose for each county
Components of Vaccine Acceptance in VA

Using pooled surveys (7 days) allows for better measurement over time

- Corrected Acceptance holds steady from late March in 7—75% range
- Unvaccinated Acceptance remains above 10%
Vaccine Acceptance in Virginia - COVIDcast

Acceptance remains high:
- Proportion of Virginians that have already or would definitely or probably accept vaccination if offered today
- Survey respondents are reporting high levels of vaccination of ~80% reflecting bias of the mechanism
- Top reasons for hesitancy: side effects, distrust (increasing), unnecessary (increasing)
- More likely to take if recommended by: doctors and friends
- Reasons unnecessary: Not serious, not high risk, or other

Data Source: https://covidcast.cmu.edu
Levels of Acceptance and potential acceptance in flux:
• Nearly all the “Definitely Yes” have been vaccinated, yet there are 5-10% remaining across the regions
• Northwest and Southwest (to lesser degree) see growth in “probably not”, seemingly from “definitely not”

Data Source: https://covidcast.cmu.edu
SARS-CoV2 Variants of Concern

Emerging new variants will alter the future trajectories of pandemic and have implications for future control

- Emerging variants can:
 - Increase transmissibility
 - Increase severity (more hospitalizations and/or deaths)
 - Limit immunity provided by prior infection and vaccinations

- Genomic surveillance remains very limited
 - Challenges ability to estimate impact in US to date and estimation of arrival and potential impact in future

<table>
<thead>
<tr>
<th>WHO Name</th>
<th>Transmissibility</th>
<th>Immune Evasion</th>
<th>Vaccine Effectiveness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ancestral</td>
<td>—</td>
<td>—</td>
<td>✓</td>
</tr>
<tr>
<td>D614G</td>
<td>+</td>
<td>—</td>
<td>✓</td>
</tr>
<tr>
<td>B.1.1.7</td>
<td>Alpha</td>
<td>+++</td>
<td>—</td>
</tr>
<tr>
<td>B.1.351</td>
<td>Beta</td>
<td>+</td>
<td>++++</td>
</tr>
<tr>
<td>P.1</td>
<td>Gamma</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>B.1.429</td>
<td>Epsilon</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>B.1.526</td>
<td>Iota</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>B.1.617.2</td>
<td>Delta</td>
<td>++++</td>
<td>+++#</td>
</tr>
</tbody>
</table>

*Relative transmissibility to B.1.1.7 yet to be fully defined

1Effectiveness from real world evidence vs. severe illness, not all vaccines are effective vs all variants, and importance of 2 doses, especially for B.1.617.2 which 1 dose of mRNA or AZ is only ~30% effective * May carry more immune escape than P.1, to be determined

WHO and Eric Topol

8-Jul-21

CDC Variant Tracking
SARS-CoV2 Variants of Concern

Alpha α - Lineage B.1.1.7

Prevalence: Levels have stalled and are now dropping in most states; flat in VA

Transmissibility: Estimated increase of 50% compared to previous variants. B.1.1.7’s mutations boost its overall levels of viremia; study from Public Health England shows contacts of B.1.1.7 cases are more likely (50%) to test positive

Severity: Increased risk of hospitalization (60%) and mortality (60%). Danish study shows B.1.1.7 to have a 64% higher risk of hospitalization, while Public Health Scotland studies showed a range of 40% to 60%; Study in Nature estimates 60% higher mortality

Beta β - Lineage B.1.351

Prevalence: Levels have remained low, as this variant’s transmissibility can’t compete with B.1.1.7, however, as more of the population becomes immune it may gain an advantage

Immune Escape: Many studies show that convalescent sera from previously infected individuals does not neutralize B.1.351 virus well which is predictive of protection, however, vaccine induced immunity shows signs of effectiveness

Gamma γ - Lineage P.1

Prevalence: Nationally at 10%, slow increase in VA at 9%

Study estimates 17-32% of all infections in Manaus in 2021 were reinfections, which helps explain data from Brazil demonstrating P.1’s continued dominance in Rio despite presence of B.1.1.7
SARS-CoV2 Variants of Concern

Delta δ - Lineage B.1.617.2 and related subvariants

- Delta plus δ+ lineage which contains the K417N mutation is emerging as a sub-variant that is even more transmissible. Declared a VoC in India.

- Strain shows **continued growth in Europe** and across US, predicted to predominate in coming weeks (July 2\(^{nd}\) in VA), Scotland now experiencing highest daily case counts, driven by delta.

- **Several studies** estimate B.1.617.2 to have 100% faster growth than B.1.1.7, and a UK study suggests a 13% advantage over B.1.1.7; we are roughly tracking what seems to be a ~60% growth rate advantage in VA.

- **More studies** show limited **immune escape** similar to B.1.351, however, many studies still suggest protection remains for vaccinated, especially 2 doses and mRNA vaccines.

- **PHE study** shows limited efficacy of Astra-Zeneca with only one dose, efficacy returns following 2\(^{nd}\) dose, also stronger with a followup Pfizer.

- **Public Health Scotland study in Lancet** suggests Delta is 2x more likely to cause hospitalization than Alpha.

- **New study** shows evasion of natural and of Pfizer vax (though weak) also shows transmissibility boost comes from more efficient fusion and lung cell entry.

Table 1: Estimated vaccine effectiveness against hospitalization

<table>
<thead>
<tr>
<th>Vaccine Status</th>
<th>Alpha vs Symptomatic Disease</th>
<th>HR vs Hospitalisation</th>
<th>VE vs Hospitalisation</th>
<th>Delta vs Symptomatic Disease</th>
<th>HR vs Hospitalisation</th>
<th>VE vs Hospitalisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any Vaccine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dose 1</td>
<td>0.53 (0.46-0.60)</td>
<td>0.44 (0.28-0.70)</td>
<td>78% (65-86)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dose 2</td>
<td>0.13 (0.1-0.15)</td>
<td>0.04 (0.04-0.72)</td>
<td>92% (78-97)</td>
<td>0.20 (0.15-0.26)</td>
<td>0.25 (0.1-0.72)</td>
<td>95% (85-98)</td>
</tr>
<tr>
<td>Pfizer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dose 1</td>
<td>0.53 (0.47-0.60)</td>
<td>0.32 (0.14-0.78)</td>
<td>89% (62-93)</td>
<td>0.64 (0.54-0.77)</td>
<td>0.69 (0.41-0.75)</td>
<td>94% (46-99)</td>
</tr>
<tr>
<td>Dose 2</td>
<td>0.09 (0.09-0.08)</td>
<td>0.08 (0.15-0.77)</td>
<td>95% (78-99)</td>
<td>0.12 (0.27-0.64)</td>
<td>0.21 (0.19-0.64)</td>
<td>96% (86-99)</td>
</tr>
<tr>
<td>AstraZeneca</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dose 1</td>
<td>0.53 (0.48-0.58)</td>
<td>0.48 (0.30-0.77)</td>
<td>76% (46-85)</td>
<td>0.30 (0.20-0.51)</td>
<td>0.41 (0.24-0.70)</td>
<td>71% (53-83)</td>
</tr>
<tr>
<td>Dose 2</td>
<td>0.06 (0.02-0.32)</td>
<td>0.13 (0.15-0.36)</td>
<td>95% (13-96)</td>
<td>0.03 (0.02-0.96)</td>
<td>0.31 (0.18-0.78)</td>
<td>97% (75-87)</td>
</tr>
</tbody>
</table>

Public Health England study shows vaccines are effective against hospitalization with Delta variant infections (94-96% for Pfizer). Also shows that one dose AZ has much lower efficacy (71%) PHE.
July 07, 2021 Strain/Vaccine update

Cases and hospitalisations are following broadly similar paths in the US and the UK so far

Relative increase in each metric (log scale), by number of days since it began to rise

Source: FT analysis of data from UK government Covid-19 dashboard and US CDC

https://twitter.com/burnmurdoch/status/1412762156848799744

These results suggest that BNT162b2 is moderately to highly effective in reducing infectivity, via preventing infection and through reducing viral shedding. Incidence of (v) symptomatic and (vi) symptomatic-infectious cases was significantly lower among fully vaccinated vs. unvaccinated individuals (VE(v)= 89.7%, 95%CI 84-94%, VE(vi)=88.1%, 95%CI 80-95%). The mean Ct-value was significantly higher in vaccinated vs. unvaccinated (27.3±1.2 vs. 22.2±1.0, p<0.001) and the proportion of positive SARS-CoV-2 antigen tests was also significantly lower among vaccinated vs. unvaccinated PCR-positive HCW (80% vs. 31%, p<0.001). Lower infectivity was correlated with higher IgG concentrations (R=0.36, p=0.01)

https://www.sciencedirect.com/science/article/pii/S2666776221001277#fig0003

CDC study shows mRNA vaccination suppression of covid infections as assessed with frequent NP swabs in nearly 4,000 participants 91% efficacy of blocking transmission of infection (2 doses); 40% reduction of viral load

Cases up in Oxford by 100% in past 7 days
https://coronavirus.data.gov.uk/
https://twitter.com/Dr_D_Robertson/status/1411391546969231362
https://twitter.com/jburnmurdoch/status/1412762156848799744
Variant of Concern Trajectories
Other State Comparisons

Trajectories of States

• Nearly all states are declining
• Growth out west has slowed, recent reporting artifacts in some states perturb the otherwise calm picture

Virginia and her neighbors

• VA and neighbors are all declining with steady pace
• Most neighbors are now below 10/100K level
Key Takeaways

Projecting future cases precisely is impossible and unnecessary. Even without perfect projections, we can confidently draw conclusions:

- **Case rates in Virginia have slightly risen, some districts with moderate growth**
- VA mean weekly incidence slightly up to 2.1/100K from 1.9/100K, US flat at 4.2/100K (from 3.9/100K)
- Vaccination rates continue to be slow while measured acceptance among unvaccinated remains steady
- Delta variant continues to grow, causing surges in other states and increased hospitalizations

The situation continues to change. Models continue to be updated regularly.
References

NSSAC. PatchSim: Code for simulating the metapopulation SEIR model. https://github.com/NSSAC/PatchSim

Google. COVID-19 community mobility reports. https://www.google.com/covid19/mobility/

Questions?

Points of Contact

Bryan Lewis
brylew@virginia.edu

Srini Venkatramanan
srini@virginia.edu

Madhav Marathe
marathe@virginia.edu

Chris Barrett
ChrisBarrett@virginia.edu

Biocomplexity COVID-19 Response Team

Aniruddha Adiga, Abhijin Adiga, Hannah Baek, Chris Barrett, Golda Barrow, Richard Beckman, Parantapa Bhattacharya, Jiangzhuo Chen, Clark Cucinell, Patrick Corbett, Allan Dickerman, Stephen Eubank, Stefan Hoops, Ben Hurt, Ron Kenyon, Brian Klahn, Bryan Lewis, Dustin Machi, Chunhong Mao, Achla Marathe, Madhav Marathe, Henning Mortveit, Mark Orr, Joseph Outten, Akhil Peddireddy, Przemyslaw Porebski, Erin Raymond, Jose Bayoan Santiago Calderon, James Schlitt, Samarth Swarup, Alex Telionis, Srinivasan Venkatramanan, Anil Vullikanti, James Walke, Andrew Warren, Amanda Wilson, Dawen Xie