Network Systems Science & Advanced Computing Biocomplexity Institute & Initiative University of Virginia

Foresight and Analysis of Infectious Disease Threats to Virginia's Public Health

March 30th, 2023

(data current to March 23rd – March 29th) Biocomplexity Institute Technical report: TR BI-2023-43

UNIVERSITY of VIRGINIA

BIOCOMPLEXITY INSTITUTE

biocomplexity.virginia.edu

About Us

- Biocomplexity Institute at the University of Virginia
 - Using big data and simulations to understand massively interactive systems and solve societal problems
- Over 20 years of crafting and analyzing infectious disease models
 - Pandemic response for Influenza, Ebola, Zika, and others

Points of Contact

Bryan Lewis brylew@virginia.edu

Srini Venkatramanan srini@virginia.edu

Madhav Marathe marathe@virginia.edu

Chris Barrett ChrisBarrett@virginia.edu

Model Development, Outbreak Analytics, and Delivery Team

Abhijin Adiga, Aniruddha Adiga, Hannah Baek, Chris Barrett, Parantapa Bhattacharya, Chen Chen, Da Qi Chen, Jiangzhuo Chen, Baltazar Espinoza, Galen Harrison, Stefan Hoops, Ben Hurt, Gursharn Kaur, Brian Klahn, Chris Kuhlman, Bryan Lewis, Dustin Machi, Madhav Marathe, Sifat Moon, Henning Mortveit, Mark Orr, Przemyslaw Porebski, SS Ravi, Erin Raymond, Samarth Swarup, Srinivasan Venkatramanan, Anil Vullikanti, Andrew Warren, Amanda Wilson, Dawen Xie

BIOCOMPLEXITY INSTITUTE

Overview

• **Goal**: Understand impact of current and emerging Infectious Disease threats to the Commonwealth of Virginia using modeling and analytics

• Approach:

- Provide analyses and summaries of current infectious disease threats
- Survey existing forecasts and trends in these threats
- Analyze and summarize the current situation and trends of these threats in the broader context of the US and world.
- Provide broader overview of other emerging threats

Key Takeaways

Projecting future cases precisely is impossible and unnecessary. Even without perfect projections, we can confidently draw conclusions:

- Case rates and hospitalizations from COVID-19 continue decline but rate is slowing towards a plateau
 - Hospital occupancy down to levels last seen in early May of 2022
- Influenza hospitalizations remain very low and ILI activity remains below seasonal threshold

Model Updates

• Projected Trajectories from previous rounds remain on target, no new projections made this round

COVID-19 Surveillance

Case Rates (per 100k) and Test Positivity

UNIVERSITY VIRGINIA

BIOCOMPLEXITY INSTITUTE

District Trajectories

Goal: Define epochs of a Health District's COVID-19 incidence to characterize the current trajectory

Method: Find recent peak and use hockey stick fit to find inflection point afterwards, then use this period's slope to define the trajectory

Hockey stick fit

Trajectory	Description	Weekly Case Rate Slope (per 100k)	Weekly Hosp Rate Slope (per 100k)
Declining	Sustained decreases following a recent peak	slope < -0.88/day	slope < -0.07/day
Plateau	Steady level with minimal trend up or down	-0.88/day < slope < 0.42/day	-0.07/day < slope < 0.07/day
Slow Growth	Sustained growth not rapid enough to be considered a Surge	0.42/day < slope < 2.45/day	0.07/day < slope < 0.21/day
In Surge	Currently experiencing sustained rapid and significant growth	2.45/day < slope	0.21/day < slope

District Case Trajectories – last 10 weeks

Statuc	Number of Districts			
Sidius	Current Week	Last Week		
Declining	22	(31)		
Plateau	7	(4)		
Slow Growth	6	(0)		
In Surge	0	(0)		

Curve shows smoothed case rate (per 100K) Trajectories of states in label & chart box Case Rate curve colored by Reproductive number

MUNIVERSITY of VIRGINIA

BIOCOMPLEXITY INSTITUTE

District Case Trajectories – Full History

BIOCOMPLEXITY INSTITUTE

District Case Trajectories – Recent 6 months

BIOCOMPLEXITY INSTITUTE

District Hospital Trajectories – last 10 weeks

Statuc	Number of Districts			
Status	Current Week	Last Week		
Declining	24	(29)		
Plateau	10	(5)		
Slow Growth	1	(1)		
In Surge	0	(0)		

Curve shows smoothed hospitalization rate (per 100K) by district Hosp rate curve colored by R_e number

BIOCOMPLEXITY INSTITUTE

2023-03-22

CDC's COVID-19 Community Levels

COVID-19 Community Level Trends - Virginia [2023-03-23]

COVID-19 Community Leve

Mediun

120-

VA

Red outline indicates county had 200 or more cases per 100k in last week

Pale color indicates either beds or occupancy set the level for this county

Dark color indicates both beds and occupancy set the level for this county

covid-15 community cevels – ose the ingliest cevel that Applies to Your community					
New COVID-19 Cases Per 100,000 people in the past 7 days	Indicators	Low	Medium	High	
	New COVID-19 admissions per 100,000 population (7-day total)	<10.0	10.0-19.9	≥20.0	
Fewer than 200	Percent of staffed inpatient beds occupied by COVID-19 patients (7-day average)	<10.0%	10.0-14.9%	≥15.0%	
	New COVID-19 admissions per 100,000 population (7-day total)	NA	<10.0	≥10.0	
200 or more	Percent of staffed inpatient beds occupied by COVID-19 patients (7-day average)	NA	<10.0%	≥10.0%	

COVID-19 Community Levels - Use the Highest Level that Applies to Your Community

The COVID-19 community level is determined by the higher of the new admissions and inpatient beds metrics, based on the current level of new cases per 100,000 population in the past 7 days

UNIVERSITY of **VIRGINIA** Data from: CDC Data Tracker Portal

31-Mar-23

Last week

BIOCOMPLEXITY INSTITUTE

3000

2500 -

2000 -

1500 -

1000 -

500 -

USA

COVID-19 Community Level Trends - USA [2023-03-23]

COVID-19 Community Level

High

Media

2022-02-242022-05-052022-07-142022-09-222022-12-012023-02-09

District Trajectories with Community Levels

COVID-19 Growth Metrics

Estimating Daily Reproductive Number – VDH report dates

March 28th Estimates

Region	Date Confirmed R _e	Date Confirmed Diff Last Week
State-wide	1.027	0.126
Central	0.994	0.078
Eastern	1.066	0.245
Far SW	1.062	0.017
Near SW	1.051	0.214
Northern	1.025	0.138
Northwest	0.928	-0.114

Methodology

- Wallinga-Teunis method (EpiEstim¹) for cases by confirmation date
- Serial interval: updated to discrete distribution from observations (mean=4.3, Flaxman et al, Nature 2020)
- Using Confirmation date since due to increasingly unstable estimates from onset date due to backfill

1. Anne Cori, Neil M. Ferguson, Christophe Fraser, Simon Cauchemez. A New Framework and Software to Estimate Time-Varying Reproduction Numbers During Epidemics. American Journal of Epidemiology, Volume 178, Issue 9, 1 November 2013, Pages 1505–1512, <u>https://doi.org/10.1093/aje/kwt133</u>

Wastewater Monitoring

Wastewater provides a coarse early warning of COVID-19 levels in communities

- Overall in the US, there is an increase in sites with increased levels of virus compared to 15 days ago
- Growth seen in the category where current virus levels are at or exceeding max of previous historical levels

MUNIVERSITY of VIRGINIA

Data Source: <u>CDC Data Tracker</u>

COVID-like Illness Activity

COVID-like Illness (CLI) gives a measure of COVID transmission in the community

- Emergency Dept (ED) based CLI is more correlated with case reporting
- Urgent Care (UC) is a leading indicator but may be influenced by testing for other URIs
- Levels continue to decline into lowest levels in past 7 months

BIOCOMPLEXITY INSTITUTE

COVID-19 Severity Metrics

Hospitalizations and Severe Outcomes

Proportion of most severe outcomes decreasing among those who are hospitalized

- ICU has declined from ~20% of hospitalized to 10-15% since initial Omicron wave
- Levels remain near all time lows, though have entered an oscillating plateau
- Regional trends are similar to state levels

Virginia Regional ICU percent

Virginia Regional Ventilation %

Hospitalizations in VA by Age

Age distribution in hospitals relatively stable

- Uptick in hospitalizations mostly fueled by 70+ age group
- Pediatric hospitalizations level off after uptick last week

Pediatric Hospitalizations by Age (0-17yo)

pediatric age-groups 100 Weekly pediatric hospitalizations 0-4 5-11 80 12-17 unknown 60 40 hosp. across 0-4 5-11 20 -12-17 unknown % Feb Mar Oct Mar Oct Nov Dec Jan Nov Dec Feb lan 2023 2023 date date

Note: These data are lagged and based on HHS hospital reporting

Data Source: Delphi and HHS

COVID-19 Spatial Epidemiology

Zip code level weekly Case Rate (per 100K)

Case Rates in the last week by zip code

- Statewide prevalence has fallen to the lowest levels since the Summer of 2021. Though changing ascertainment rates may be confounding this data.
- Bland, VA is the only locale with a prison in this week's top 10.
- A cluster of high values can be seen in Southwest VA near Galax.
- Some counts are low and suppressed to protect anonymity. They are shown with a red outline.

Rank	Zip Code	Name	Prev	Point Prevalence by Zip Co	de
1	24053	Ararat	7,110	(2023-03-28)	
2	24317	Cana	4,090	, , ,	2
3	24319	Chilhowie	2,780		
4	22454	Dunnsville	2,470	5	mante
5	24083	Daleville	2,160		2
6	24328	Fancy Gap	2,050		7
7	24315	Bland*	2,030		X
8	24311	Atkins	1,970	s a f	
9	23011	Barhamsville	1,800		2
10	24473	Rockbridge Baths	1,450	501	4
Onl	y includes zips v * Denotes z	with pop ≥ 1000 and no supp. (ip codes with state prisons.	data.		X
				5	7
		A	7		mart

UNIVERSITY of VIRGINIA

6

BIOCOMPLEXITY INSTITUTE

Point Prevalence High : 6000+

4000

2000

Data

9

Low:0

Units = Active Cases / 100,000 Contains Suppressed*

Risk of Exposure by Group Size and HCW prevalence

Case Prevalence in the last week by zip code used to calculate risk of encountering someone infected in a gathering of randomly selected people

- **Group Size**: Assumes **8 undetected infections** per confirmed case (ascertainment rate from recent seroprevalence survey) and shows minimum size of a group with a 50% chance an individual is infected by zip code (e.g., in a group of 9 in Ararat, there is a 50% chance someone will be infected).
- HCW ratio: Case rate among health care workers (HCW) in the last fortnight using patient facing health care workers as the numerator / population's case prevalence. Most highlighted counties have < 5 HCW cases.

BIOCOMPLEXITY INSTITUTE

Current Hot-Spots

Case rates that are significantly different from neighboring areas or model projections

- Spatial: Getis-Ord Gi* based hot spots compare clusters of zip codes with weekly case prevalence higher than nearby zip codes to identify larger areas with statistically significant deviations
- **Temporal**: The weekly case rate (per 100K) projected last month compared to those observed by county, which highlights temporal fluctuations that differ from the model's projections.
- Most spatial hotspots this week were found in Southwest Virginia. Model slightly underpredicted parts of the far SW, and overpredicted cases in Southside. But models were within ± 50 per 100k for all health districts.

Scenario Trajectory Tracking

Which scenario from a month ago did projection for each county track closest?

- One-month projections separate the scenarios more clearly and reveals larger overall patterns.
- The two "increased transmission" scenarios were identical at this time point and combined into a single color (shown in orange). This scenario fits only a flandful of counties better than the current course model. ^{31-Mar-23}
 25

COVID-19 Broader Context

United States Hospitalizations

Statuc	Number of States			
Status	Current Week	Last Week		
Declining	27	(30)		
Plateau	19	(19)		
Slow Growth	5	(3)		
In Surge	2	(1)		

Virginia and Her Neighbors

MUNIVERSITY of VIRGINIA

BIOCOMPLEXITY INSTITUTE

Around the World – Various trajectories

Confirmed cases

Hospitalizations

31-Mar-23

BIOCOMPLEXITY INSTITUTE

COVID-19 Genomic Update

SARS-CoV2 Variants of Concern

Emerging variants have potential to continue to alter the future trajectories of pandemic and have implications for future control

• Variants have been observed to: increase transmissibility, increase severity (more hospitalizations and/or deaths), and limit immunity provided by prior infection and vaccinations

Weighted and Nowcast Estimates in HHS Region 3 for Weeks of 12/18/2022 – 3/25/2023

Hover over (or tap in mobile) any lineage of interest to see the amount of uncertainty in that lineage's estimate

Nowcast Estimates in HHS Region 3 for 3/19/2023 – 3/25/2023

CDC Variant Tracking

https://clades.nextstrain.org

Omicron Updates*

- XBB.1.5 continues to dominate accounting for 94%
- XBB.1.5.1 is at 3%, and XBB.1.9.1 is nearly at 1%
- All other XBB strains (including XBB.1.16.1) is at 1%
- BQ.1.1, CH.1.1, and BQ.1 are all below 1% but remain in the population

*percentages are CDC NowCast Estimates

SARS-CoV2 Sequencing

Emerging variants have potential to continue to alter the future trajectories of pandemic and have implications for future control

- Current proportion of cases being sequenced is on a downward trend nationally.
- Leveraging additional resources such as wastewater sequencing and adopting into existing infrastructure will be an important supplement

31-Mar-23

-BA.2 BJ.T BJ.T BA.275.2 BA.275.2

United States

Weekly Nucleic Acid Amplification Tests (NAATs) Performed and COVID-19 Nucleic Acid Amplification Tests (NAATs) 7-day Percent Positivity in The United States Reported to CDC

BA.2.12.1

BA.4.6

https://cov-spectrum.org/explore/United%20States/AllSamples/Past6M/sequencing-coverage

https://covid.cdc.gov/covid-datatracker/#trends_7daytestresultsreported_7daytestingpositive_00

https://clades.nextstrain.org

32

BQ.1.

SARS-CoV2 Omicron Sub-Variants

Prevalence

Enabled by data from **GISAID**

covSPECTRUM

SARS-CoV2 Omicron Sub-Variants

Which variant would you like to explore? Editor's choice V 91.3% BQ.1* 5.8% XBB³ 0.8% BA.2.75* 1.4% BA.5* but NOT BQ.1* 87.6% EG.1 0.3% XBB* + S:486P 1.1% XBB.1.9.1*/XBB.1.9.2 2.9% CH.1.1* BQ.1* + S:R346T + S:144del 1.6% BQ.1* + S:346T + S:248X 0.2% 0.3% XBF* 0.2% BN.1* BF.7* 0.1% S:486P 88.3%

31-Mar-23

XBB.1.5

MUNIVERSITY of VIRGINIA

BIOCOMPLEXITY INSTITUTE

SARS-CoV2 Omicron Sub-Variants

MUNIVERSITY of VIRGINIA

Global SARS-CoV2 Variant Status

B.1.617.2 B.1.1.529 BA.1.1 BA.2 BA.2.12.1 BA.2.75 BA.2.75.2 BN.1 BA.4.6 BA.5 BF.7 CH.1.1 BA.4 BA.5.2.6 BF.11 BQ.1 XBB.1.5 XBB.1.9.1 BQ.1.1 XBB Other 100 Viral lineages among positive pools (%) 80 60 40 20 11/29 12/27 1/24 2/21 3/21 4/18 5/16 6/13 7/11 8/8 9/5 10/3 10/31 11/28 12/26 1/23 3/6 Week of Collection

https://covid.cdc.gov/covid-data-tracker/#traveler-genomic-surveillance https://github.com/gerstung-lab/SARS-CoV-2-International (02/09/23)

Variants Detected, by Collection Week

Pandemic Pubs (March 30th, 2023)

1. A comprehensive assessment of factors associated with standardized infection, hospitalization, and death rates were performed, including healthcare, social, and political factors that vary by state. Virginia's standardized death rate was lower than the national average. Many other outcomes and factors were assessed. Lancet

60

0.85

0.90

oonle with health insuran

0.95

Standardised cumulative COVID-19 death rates for the period from Jan 1, 2020, to July 31, 2022 varied across the USA (national rate 372 deaths per 100 000 population [95% uncertainty interval [UI] 364–379]),

A lower poverty rate, higher mean number of years of education, and a greater proportion of people expressing interpersonal trust were statistically associated with lower infection and death rates, and states where larger percentages of the population identify as Black (non-Hispanic) or Hispanic were associated with higher cumulative death rates.

> Access to quality health care (measured by the IHME's Healthcare Access and Quality Index) was associated with fewer total COVID-19 deaths and SARS-CoV-2 infections, but higher public health spending and more public health personnel per capita were not, at the state level. The political affiliation of the state governor was not associated with lower SARS-CoV-2 infection or COVID-19 death rates, but worse COVID-19 outcomes were associated with the proportion of a state's voters who voted for the 2020 Republican presidential candidate. State governments' uses of protective mandates were associated with lower infection rates, as were mask use, lower mobility, and higher vaccination rate, while vaccination rates were associated with lower death rates. State GDP and student reading test scores were not associated with state COVD-19 policy responses, infection rates, or death rates.

ulative standardised death rate per 100 000 people

Pandemic Pubs (March 22nd, 2023)

1. People with prior SARS-CoV-2 infection had a considerably lower magnitude and quality of a key immune cell's response to vaccination with two doses of the Pfizer-BioNTech COVID-19 vaccine compared to people without prior infection.

The researchers analyzed CD4+ and CD8+ T-cell responses in blood samples from three groups of volunteers. One group had never been infected with SARS-CoV-2 and received two doses of the Pfizer-BioNTech COVID-19 vaccine. The second group had previously been infected with SARS-CoV-2 and received two doses of the vaccine. The third group had COVID-19 and was unvaccinated. The researchers found that people who had never been infected with SARS-CoV-2 and received two doses of the Pfizer-BioNTech COVID-19 vaccine had robust CD4+ and CD8+ T-cell responses to the virus' spike protein. **People who had been infected with SARS-CoV-2 prior to vaccination produced spike-specific CD8+ T cells at considerably lower levels—and with less functionality—than vaccinated people who had never been infected.** Moreover, unvaccinated people with COVID-19 had substantially lower levels of spike-specific CD8+ T cells than vaccinated people who had never been infected.

Pandemic Pubs (March 8th, 2023)

1. Two studies recently published in BMJ show effectiveness of vaccination in reducing risk of long COVID. <u>Byambasuren et al.</u> conducted a systematic review based on 16 studies and over 600K patients show a consistent pattern of protection with higher levels of vaccination. <u>Tran et al.</u> Conducted a paired cohort study of long COVID sufferers and measured a significant reduction in symptoms following vaccination.

Study or subgroup	Log (odds ratio)	Standard error	Odds ratio IV, random (95% Cl)	Odds ratio IV, random (95% CI)
One dose before infection	n			
loannou 2022 ²³	0.030	0.041	•	1.03 (0.95 to 1.12)
Antonelli 2022 ²⁰	0.030	0.098	-	1.03 (0.85 to 1.25)
Taguet 202127	-0.041	0.039	•	0.96 (0.89 to 1.04)
Azzolini 2022 ²²	-0.151	0.719		0.86 (0.21 to 3.52)
Simon 202131	-1.514	0.049	•	0.22 (0.20 to 0.24)
Two doses before infection	on			
van der Maaden 2022 ²⁸	0.020	0.093	-	1.02 (0.85 to 1.22)
Taquet 202127	0.000	0.026	•	1.00 (0.95 to 1.05)
loannou 2022 ²³	-0.249	0.070	*	0.78 (0.68 to 0.89)
Mohr 2022 ²⁴	-0.357	0.096		0.70 (0.58 to 0.84)
Ayoubkhani 2022 ²¹	-0.528	0.084	*	0.59 (0.50 to 0.70)
Tannous 2022 ²⁶	-0.545	0.056	•	0.58 (0.52 to 0.65)
Antonelli 2022 ²⁰	-0.673	0.238		0.51 (0.32 to 0.81)
Azzolini 202222	-1.386	0.650		0.25 (0.07 to 0.89)
Three doses before infec	tion			
Azzolini 202222	-1.833	0.854		0.16 (0.03 to 0.85)
Any dose before infection	n			
Taquet 202127	0.010	0.026	•	1.01 (0.96 to 1.06)
Al-Aly 202219	-0.139	0.024	•	0.87 (0.83 to 0.91)
Pell 202225	-0.274	0.112	-+-	0.76 (0.61 to 0.95)
Tannous 2022 ²⁶	-0.545	0.056	•	0.58 (0.52 to 0.65)
Zisis 202229	-0.734	0.056	•	0.48 (0.43 to 0.54)
One dose after infection diagnosis of long covid	or after			
Ayoubkhani 2022 ³⁰	-0.139	0.037	•	0.87 (0.81 to 0.93)
Simon 2021 (8-12 weeks)	³¹ -0.288	0.028	•	0.75 (0.71 to 0.79)
Wisnivesky 2022 ³³	-0.343	0.475		0.71 (0.28 to 1.80)
Simon 2021 (4-8 weeks)31	-0.616	0.029	•	0.54 (0.51 to 0.57)
Tran 202132	-0.673	0.238		0.51 (0.32 to 0.81)
Simon 2021 (0-4 weeks)31	-0.968	0.042	•	0.38 (0.35 to 0.41)
Two doses after infectior diagnosis of long covid	or after			
Ayoubkhani 2022 ³⁰	-0.094	0.029	•	0.91 (0.86 to 0.96)
Wisnivesky 202233	-0.416	0.386		0.66 (0.31 to 1.41)
Wynberg 2022 ³⁴	-0.446	0.676		0.64 (0.17 to 2.41)
		0. Fi	05 0.2 1 5 avours Fa accine no va	20 avours accine

Figure 2 | Forest plot of the effect of covid-19 vaccine doses on long covid. Only relevant outcomes from all reported outcomes in individual studies were chosen. The ratios have a range of time frames (tables 1 and 2, and online supplemental file 3). IV=inverse variance

Effect of covid-19 vaccination on long covid: systematic review

with long covid: target trial emulation based on ComPaRe e-cohort

Pandemic Pubs (March 8th, 2023)

2. Study in Lancet demonstrates significant reduction in risk for developing long COVID through a randomized controlled trial of treatment with 6 days of Metformin (traditionally used to treat high blood sugar in diabetes) following COVID diagnosis

Outpatient Treatment of COVID-19 and the Development of Long COVID Over 10 Months: A Multi-Center, Quadruple-Blind, Parallel Group Randomized Phase 3 Trial

Influenza Update

Current Influenza Situation – ILI Activity

Influenza Activity finally falls below threshold

- Virginia remains is now at a "Low" level as is most of the nation
- National ILI activity has also consistently declined since a peak in late November, and remains below threshold
- All regions and the nation are now below the seasonal threshold for ILI activity

Region 3

42

Current Influenza Situation - Hospitalizations

Influenza A hospitalizations continue decline

National level of influenza hospitalizations ٠ have dropped to pre-season levels

28.000

24.000

20,000

16,000

12,000

8,000

4,000

0

Unified hospital analytic datase

Current Combined Hospitalizations (COVID-19 & Influenza)

COVID-19 and Influenza Weekly Hospitalizations (HHS Protect)

Virginia Flu and COVID hospitalizations (Admissions)

National Flu and COVID hospitalizations (Admissions)

USA

BIOCOMPLEXITY INSTITUTE

Model Results

Previous projections comparison - Hospitalizations

- Previous projections have tracked observed hospitalizations well
- Past 6 weeks have stayed steady and indicate no increases in transmissions

National Modeling Hub Updates

Current COVID-19 Hospitalization Forecast

Statistical models for submitting to CDC FluSight forecasting challenge

 Uses a variety of statistical and ML approaches to forecast weekly hospital admissions for the next 4 weeks for all states in the US

Hospital Admissions for COVID-19 and Forecast for next 4 weeks (UVA ensemble)

Dec Jan 2023 target_end_date

40004

20000

48

BIOCOMPLEXITY INSTITUTE

Current Influenza Hospitalization Forecast

Statistical models for submitting to CDC FluSight forecasting challenge

• Similar to COVID-19 case forecasts, uses a variety of statistical and ML approaches to forecast weekly hospital admissions for the next 4 weeks for all states in the US

Hospital Admissions for Influenza and Forecast for next 4 weeks (UVA ensemble)

Hospital Admissions for Influenza and Forecast for next 4 weeks (CDC FluSight Ensemble)

UNIVERSITY / VIRGINIA

Combined ILI and COVID-19 Hospitalizations

Ensemble methodology that combines the Adaptive with machine learning and statistical models such as:

• Autoregressive (AR, ARIMA), Neural networks (LSTM), Kalman filtering (EnKF), G-model (phase), Holt-Winters

Weekly forecasts of hospitalizations done at state level.

Models chosen because of their track record in disease forecasting and to increase diversity and robustness.

Both are regularly submitted to CDC Forecast Hubs

Weekly Hospitalizations Short-term COVID-19 and Influenza Forecasts

Scenario Modeling Hub – COVID-19 (Round 16)

Collaboration of multiple academic teams to provide national and state-by-state level projections for 4 aligned scenarios

- Round 16 results published
- Moderate escape scenarios tracking best

	"Level 5" Variants	"Level 6/7" Variants
Accelerating uptake levels of reformulated boosters	*Level 5* Variants Scenario A • Variants have a 25% immune escape from BA.5.2 • Seeding based on combined observed prevalence of Level 5 variants at the start of the projection period • No change in severity given symptomatic infection	*Level 6/7* Variants Scenario B - Variants have a 50% immune escape from BA.5.2 - Seeding based on combined observed prevalence of Level 6 and 7 variants at the start of the projection period - No change in severity given symptomatic infection
	Accelerating uptake levels of reformulated boosters, with coverage plateauing at 90% of flu vaccination levels by February 1st, 2023 - Teams are free to use available data and information from current and previous rollouts as tehy see fit to define rates	Accelerating uptake levels of reformulated boosters, with coverage plateauing at 90% of flu vaccination levels by February 1st, 2023 - Teams are free to use available data and information from current and previous rollouts as tehy see fit to define rates
	 Teams should assume increasing uptake through October and November as necessary to reach the projected February 1st, 2022 plateau 	 Teams should assume increasing uptake through October and November as necessary to reach the projected February 1st, 2022 plateau
Current uptake levels of reformulated boosters	*Level 5* Variants Scenario C • Variants have a 25% immune escape from BA.5.2 • Seeding based on combined observed prevalence of Level 5 variants at the start of the projection period • No change in severity given symptomatic infection	*Level 6/7* Variants Scenario D - Variants have a 50% immune escape from BA.5.2 - Seeding based on combined observed prevalence of Level 6 and 7 variants at the start of the projection period - No change in severity given symptomatic infection
	Current uptake levels of reformulated boosters, with coverage plateauing at booster 1 levels by the end of the simulation - Teams are free to use available data and information from current and previous rollouts as tehy see fit to define rates	Current uptake levels of reformulated boosters, with coverage plateauing at booster I levels by the end of the simulation - Teams are free to use available data and information from current and previous rollouts as tehy see fit to define rates
	 Based on current rates, plateau date is flexible as long as it occurs before the end of the simulation (Teams can adjust rates up if needed to achieve adequate coverage by target date) 	 Based on current rates, plateau date is flexible as long as it occurs before the end of the simulation (Teams can adjust rates up if needed to achieve adequate coverage by target date)

https://covid19scenariomodelinghub.org/viz.html

Projected Incident Hospitalizations by Epidemiological Week and by Scenario for Round 16 - US

Double-click on a model name to only display II. Click on a model name to remove it or add it from Click on a model name to remove it or add it from USC-SIKJalpha UTA-ImmunoSEIRS UVA-adaptive the out display II.

Zoom in the graph by click and drag (double-click Ensemble_LOP_untrimmed

to zoom-out)

Scenario Modeling Hub – Influenza (Round 3)

to zoom-out)

Collaboration of multiple academic teams to provide national and state-by-state level projections for 4 aligned scenarios

- All rounds so far have explored the combination of a prior immunity axis and a vaccine effectiveness axis
- Round 2 and 3 are identical in design (Round 3 ٠ cutoff December 3rd)

	Optimistic flu prior immunity	Pessimistic flu prior immunity	
High Vaccine Effectiveness	Scenario A Optimistic flu prior immunity - No	Scenario B Pessimistic flu prior immunity	
	impact of missed flu seasons due to the COVID-19 pandemic on prior immunity.* - Same amount of prior immunity as in a typical, pre-COVID19 pandemic prior season.	Substantial impact of missed flu seasons due to the COVID-19 pandemic on prior immunity.* - 50% lower immunity than a typical, pre- COVID19 pandemic season.	
		High Vaccine Effectiveness	
	High Vaccine Effectiveness - VE = 50% against medically attended influenza illnesses and hospitalizations (comparable to 2015-16 season).	- VE = 50% against medically attended influenza illnesses and hospitalizations (comparable to 2015-16 season).	
Low Vaccine	Scenario C	Scenario D	
Effectiveness	Optimistic flu prior immunity	Pessimistic flu prior immunity	
	impact of missed flu seasons due to the COVID-19 pandemic on prior immunity.* - Same amount of prior immunity as in a typical, pre-COVID19 pandemic prior season.	Substantial impact of missed flu seasons due to the COVID-19 pandemic on prior immunity.* - 50% lower immunity than a typical, pre- COVID19 pandemic season.	
		Low Vaccination Protection	
	Low Vaccine Effectiveness - VE = 30% against medically attended influenza illnesses and hospitalizations (comparable to 2018-19 season).	 - VE = 30% against medically attended influenza illnesses and hospitalizations (comparable to 2018-19 season). 	

https://fluscenariomodelinghub.org/viz.html

Projected Incident Hospitalizations by Epidemiological Week and by Scenario for Round 3 - US (- Projection Epiweek; -- Current Week)

Double-click on a model name to only display it. ---- Observed Incident Hospitalizations CDDEP-FluCompModel ----- JHU_IDD-CovidSP ----- MOBS_NEU-GLEAM_FLU Click on a model name to remove it or add it from the plot display.

– NIH-FluD — PSI-M1 — USC-SIkJalpha — UT-ImmunoSEIRS — UVA-EpiHiperFlu — UVA-FluXSim — Ensemble_LOP Zoom in the graph by click and drag (double-click

Key Takeaways

Projecting future cases precisely is impossible and unnecessary. Even without perfect projections, we can confidently draw conclusions:

- Case rates and hospitalizations from COVID-19 continue decline but rate is slowing towards a plateau
 - Hospital occupancy down to levels last seen in early May of 2022
- Influenza hospitalizations remain very low and ILI activity remains below seasonal threshold

Model Updates

• Projected Trajectories from previous rounds remain on target, no new projections made this round

Questions?

Points of Contact

Bryan Lewis brylew@virginia.edu

Srini Venkatramanan srini@virginia.edu

Madhav Marathe <u>marathe@virginia.edu</u>

Chris Barrett ChrisBarrett@virginia.edu

Biocomplexity COVID-19 Response Team

Aniruddha Adiga, Abhijin Adiga, Hannah Baek, Chris Barrett, Golda Barrow, Richard Beckman, Parantapa Bhattacharya, Jiangzhuo Chen, Clark Cucinell, Patrick Corbett, Allan Dickerman, Stephen Eubank, Stefan Hoops, Ben Hurt, Ron Kenyon, Brian Klahn, Bryan Lewis, Dustin Machi, Chunhong Mao, Achla Marathe, Madhav Marathe, Henning Mortveit, Mark Orr, Joseph Outten, Akhil Peddireddy, Przemyslaw Porebski, Erin Raymond, Jose Bayoan Santiago Calderon, James Schlitt, Samarth Swarup, Alex Telionis, Srinivasan Venkatramanan, Anil Vullikanti, James Walke, Andrew Warren, Amanda Wilson, Dawen Xie

