Network Systems Science & Advanced Computing Biocomplexity Institute & Initiative University of Virginia

Foresight and Analysis of Infectious Disease Threats to Virginia's Public Health

May 25th, 2023

(data current to May 18th – May 24th) Biocomplexity Institute Technical report: TR BI-2023-86

UNIVERSITY of VIRGINIA

BIOCOMPLEXITY INSTITUTE

biocomplexity.virginia.edu

About Us

- Biocomplexity Institute at the University of Virginia
 - Using big data and simulations to understand massively interactive systems and solve societal problems
- Over 20 years of crafting and analyzing infectious disease models
 - Pandemic response for Influenza, Ebola, Zika, and others

Points of Contact

Bryan Lewis brylew@virginia.edu

Srini Venkatramanan srini@virginia.edu

Madhav Marathe marathe@virginia.edu

Chris Barrett ChrisBarrett@virginia.edu

Model Development, Outbreak Analytics, and Delivery Team

Abhijin Adiga, Aniruddha Adiga, Hannah Baek, Chris Barrett, Parantapa Bhattacharya, Chen Chen, Da Qi Chen, Jiangzhuo Chen, Baltazar Espinoza, Galen Harrison, Stefan Hoops, Ben Hurt, Gursharn Kaur, Brian Klahn, Chris Kuhlman, Bryan Lewis, Dustin Machi, Madhav Marathe, Sifat Moon, Henning Mortveit, Mark Orr, Przemyslaw Porebski, SS Ravi, Erin Raymond, Samarth Swarup, Srinivasan Venkatramanan, Anil Vullikanti, Andrew Warren, Amanda Wilson, Dawen Xie

Overview

• **Goal**: Understand impact of current and emerging Infectious Disease threats to the Commonwealth of Virginia using modeling and analytics

• Approach:

- Provide analyses and summaries of current infectious disease threats
- Survey existing forecasts and trends in these threats
- Analyze and summarize the current situation and trends of these threats in the broader context of the US and world
- Provide broad overview of other emerging threats

Key Takeaways

Projecting future cases precisely is impossible and unnecessary. Even without perfect projections, we can confidently draw conclusions:

- Case rates and hospitalizations have entered a plateau at a steady low level
- Nearly all indicators point to this trend continuing in near term
- Long term projections that assume a seasonal trend in the winter show impact of vaccine coverage and slow vs. fast evolution of immune escape
 - Broad annual vaccination campaign reduces hospitalizations by 27% over 2 years

Model Updates

• Projected Trajectories from previous rounds remain on target, no new projections made this round

Public Health Emergency Expired

May 11, 2023, marks the end of the federal COVID-19 PHE declaration. After this date, CDC's authorizations to collect certain types of public health data will expire.

- This expiration shifts elements of the COVID-19 pandemic response towards a monitoring and evaluation approach
- Changes data availability and cadence of updates

Vaccines will remain available The following metrics remain available: [[::]] Access to COVID-19 vaccines will generally not be affected for now. The U.S. government is currently distributing free COVID-19 vaccines for all adults and COVID-19 hospital admissions children. To help keep communities safe from COVID-19, HHS remains committed All hospitals are required to report data through the end of April 2024. This provides a to maximizing continued access to COVID-19 vaccines. stent and comprehensive way for weekly tracking of severe COVID-19 at the county level. These data will shift from daily to weekly reporting shortly after May 11. Tracker. COVID-19 at-home tests may not be covered by insurance. COVID-19 deaths will remain, but the source of data has changed The National Vital Statistics System (NVSS) is the most accurate and complete source of death Insurance providers will no longer be required to waive costs or provide free COVIDdata, and timeliness of death certificate reporting has improved over the course of the indemic. A new metric, the percent of deaths that are COVID-19-associated, and other metric 19 tests. CDC's No Cost COVID-19 Testing Locator can help people find current from NVSS will be reported weekly. community and pharmacy partners participating in the Increasing Community Access to Testing (ICATT) program. data.cdc.gov Emergency department patient visits with diagnosed COVID-19 will continue to be posted on a weekly basis. These data cover about three-quarters of the nation's emergency departments and provide nation about COVID-19 trends in most states. This is one of the fastest ways to spot Treatments will remain available. θØ changing trends in COVID-19 transmission Medication to prevent severe COVID-19, such as Paxlovid 📕 🗹 , will remain available for free while supplies last. After that, the price will be determined by the COVID-19 test positivity will remain, but the source of data has changed medication manufacturer and your health insurance coverage. Check with your After May 25, CDC will report regional-level test positivity data from the <u>National Respiratory</u> and <u>Enteric Virus Surveillance System (NREVSS</u>), a longstanding system with over 450 labs healthcare provider if you need early treatment to prevent severe COVID-19. from across the country that voluntarily submit data. These data can provide early indications of COVID-19 transmission National reporting of COVID-19 may change. Wastewater surveillance and genomic surveillance will remain in place This will allow the CDC to track transmission and how the virus is mutating.

CDC Announcement

hh We have the right data for this phase of COVID-19 that will allow us to understand what's happening with the virus in America in real-time. Simply put, while what we have going forward will be different, it will still allow CDC, local public health officials, and the members of the public to understand COVID-19 dynamics at the community level

Count of COVID-19 vaccines administered will remain for jurisdictions who continue to submit data, but frequency will change These data will be updated monthly, instead of weekly

The following data have been removed:

COVID-19 case and death data are no longer highlighted on COVID Data

Throughout the pandemic, case and death counts were reported weekly to the CDC by states. Case data has become increasingly unreliable as some states and jurisdictions may no longer collect case data, testing results are sometimes not reported, or some individuals skip testing all together. CDC continues to receive line-level data on COVID-19 cases through the National Notifiable Disease Surveillance System—a system that CDC uses to regularly collect case data for around 120 notifiable diseases. These data are available to the public for analysis at

National, county-level test positivity data from COVID-19 Electronic Reporting (CELR) are no longer available. This is because after May 11th laboratories are no longer required to report results 🗹 .

The V-safe tracking system for health check-ins after vaccination health check-ins is ending.

CDC will continue to monitor COVID-19 vaccines through its other established vaccine safety monitoring systems. V-safe users or others who get vaccinated can report any possible health problems or adverse events following vaccination to the Vaccine Adverse Event Reporting System 12

BIOCOMPLEXITY INSTITUTE

Centers for Disease Control and Prevention CDC 24/7: Saving Lives, Protecting People™

COVID-19

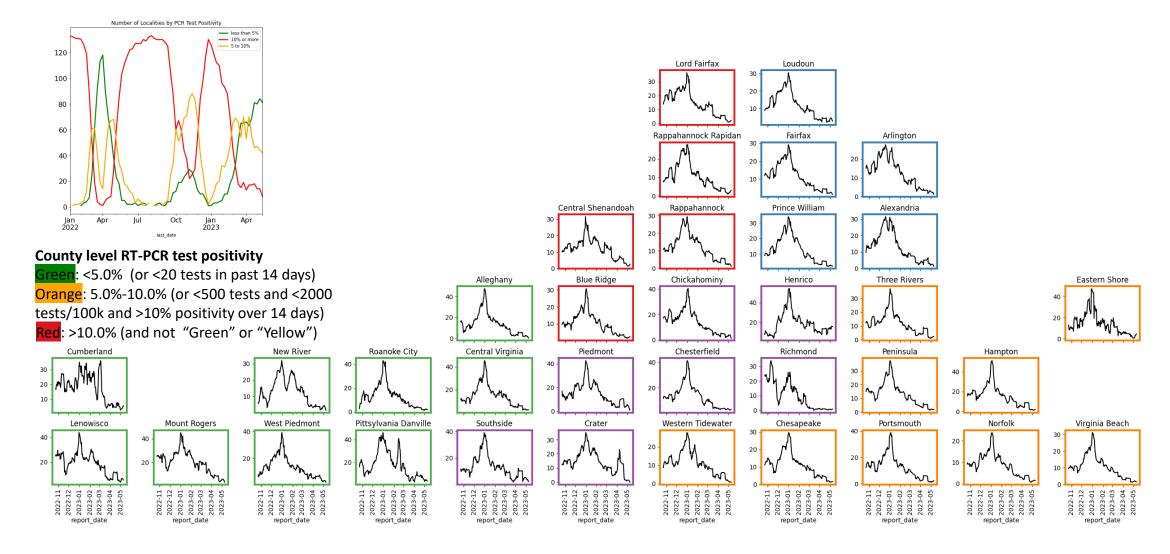
End of the Federal COVID-19 Public Health **Emergency (PHE) Declaration**

Updated May 5, 2023 Español | Other Languages Print

> OIG's COVID-19 Public Health **Emergency Flexibilities End on** May 11, 2023 Upon Expiration of the COVID-19 Public Health **Emergency Declaration**

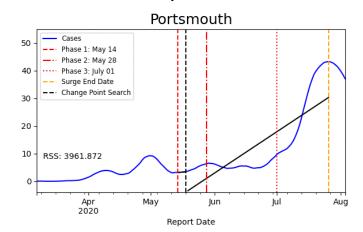
A Important

This notice reminds the health care community that OIG flexibilities, described further below, end upon the expiration of the COVID-19 Declaration on May 11, 2023.


In connection with the COVID-19 public health emergency declaration (COVID-19 Declaration) first issued by the Secretary of Health and Human Services (HHS) under Section 319 of the Public Health Service Act on January 31, 2020, and subsequently renewed, the Office of Inspector General (OIG) issued two Policy Statements and answered a series of frequently asked questions (FAQs). The Policy Statements and FAOs were designed to provide flexibility and minimize burdens for the health care industry as it faced the challenges of the COVID-19 pandemic. Based on current COVID-19 trends, HHS plans to let the COVID-19 Declaration expire at the end of the day on May 11, 2023.

COVID-19 Surveillance

Case Rates (per 100k) and Test Positivity

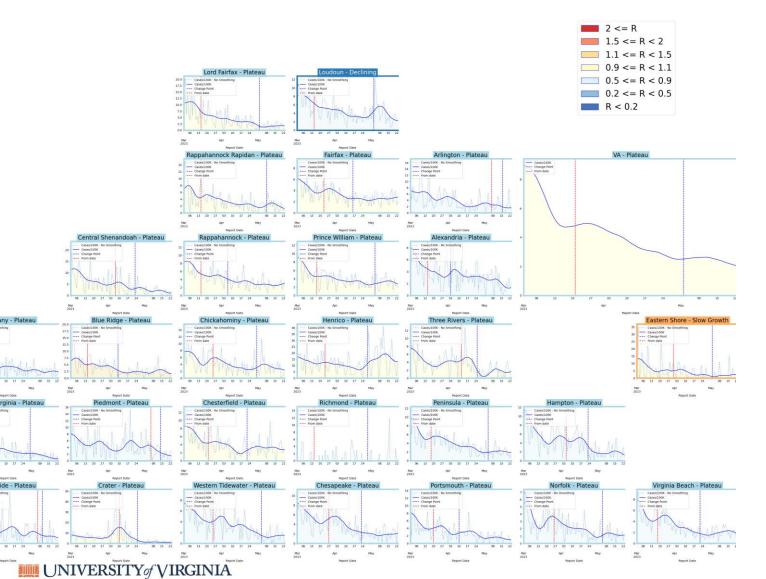


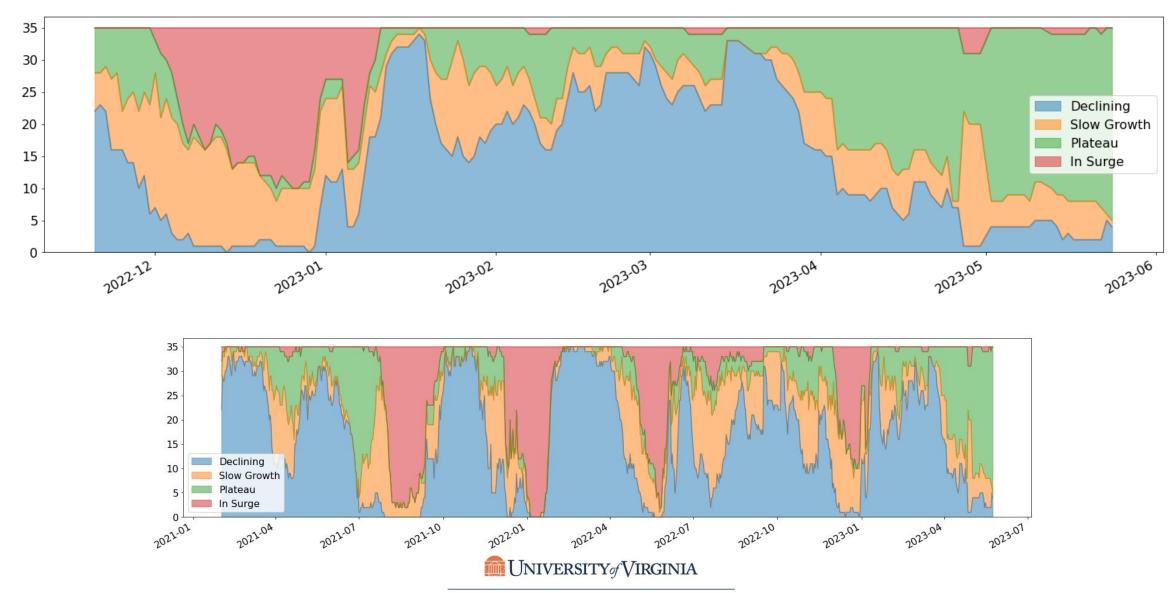
District Trajectories

Goal: Define epochs of a Health District's COVID-19 incidence to characterize the current trajectory

Method: Find recent peak and use hockey stick fit to find inflection point afterwards, then use this period's slope to define the trajectory

Hockey stick fit

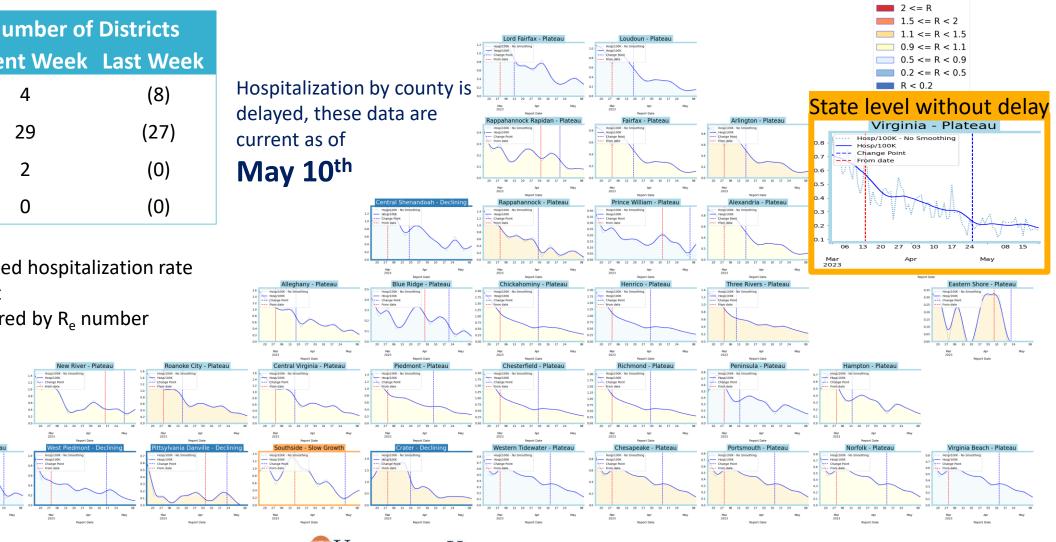

Trajectory	Description	Weekly Case Rate Slope (per 100k)	Weekly Hosp Rate Slope (per 100k)
Declining	Sustained decreases following a recent peak	slope < -0.88/day	slope < -0.07/day
Plateau	Steady level with minimal trend up or down	-0.88/day < slope < 0.42/day	-0.07/day < slope < 0.07/day
Slow Growth	Sustained growth not rapid enough to be considered a Surge	0.42/day < slope < 2.45/day	0.07/day < slope < 0.21/day
In Surge	Currently experiencing sustained rapid and significant growth	2.45/day < slope	0.21/day < slope


District Case Trajectories – last 10 weeks

Status	Number of	f Districts					
Status	Current Week	Last Week (4) (29) (2)					
Declining	4	(4)					
Plateau	30	(29)					
Slow Growth	1	(2)					
In Surge	0	(0)					

Curve shows smoothed case rate (per 100K) Trajectories of states in label & chart box Case Rate curve colored by Reproductive number

District Case Trajectories – Recent 6 months


26-May-23

BIOCOMPLEXITY INSTITUTE

District Hospital Trajectories – last 10 weeks

Status	Number of	f Districts					
Status	Current Week	Last Week					
Declining	4	(8)					
Plateau	29	(27)					
Slow Growth	2	(0)					
In Surge	0	(0)					

Curve shows smoothed hospitalization rate (per 100K) by district Hosp rate curve colored by R_e number

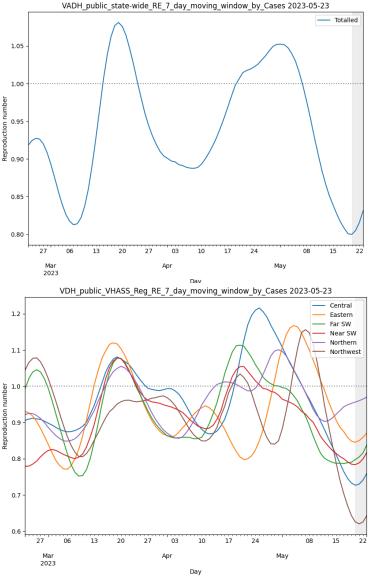
UNIVERSITY of VIRGINIA

BIOCOMPLEXITY INSTITUTE

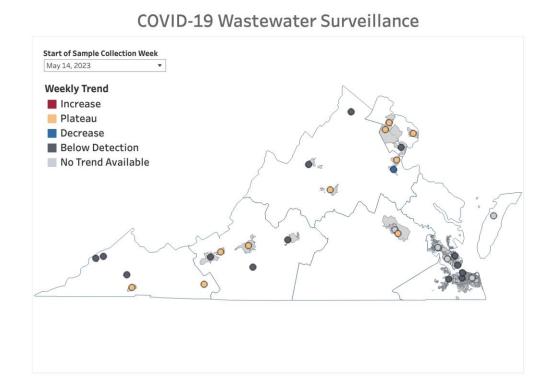
2023-05-10

COVID-19 Growth Metrics

Estimating Daily Reproductive Number – VDH report dates


May 23rd Estimates

Region	Date Confirmed R _e	Date Confirmed Diff Last Week
State-wide	0.827	-0.074
Central	0.773	-0.102
Eastern	0.890	-0.163
Far SW	0.781	0.022
Near SW	0.806	-0.071
Northern	0.949	0.054
Northwest	0.683	-0.378

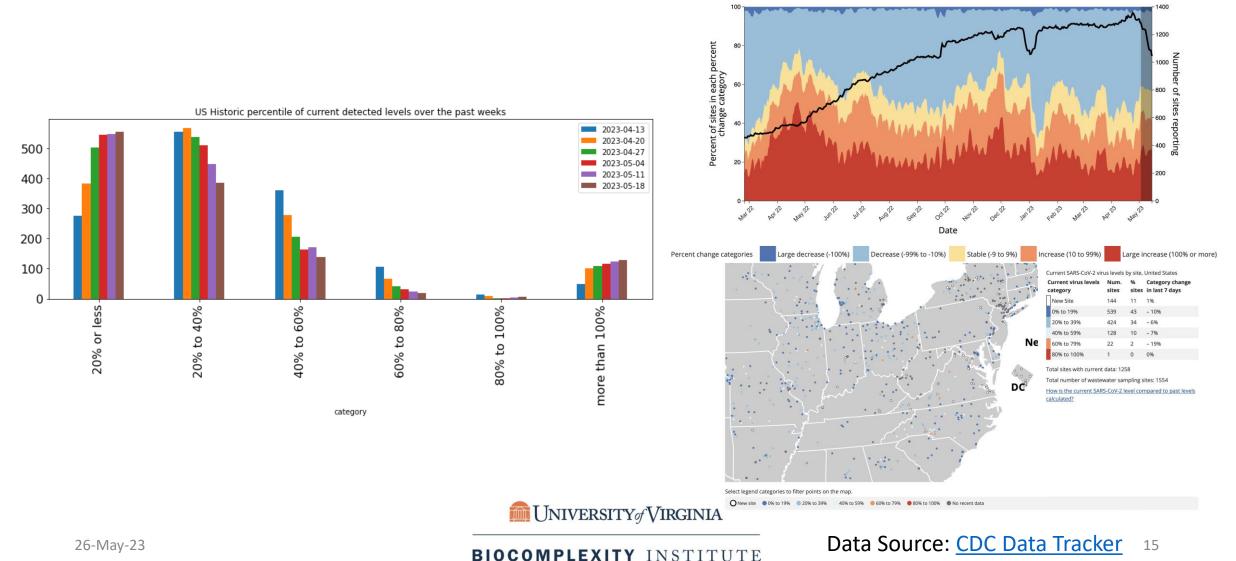

Methodology

- Wallinga-Teunis method (EpiEstim¹) for cases by confirmation date
- Serial interval: updated to discrete distribution from observations (mean=4.3, Flaxman et al, Nature 2020)
- Using Confirmation date since due to increasingly unstable estimates from onset date due to backfill

1. Anne Cori, Neil M. Ferguson, Christophe Fraser, Simon Cauchemez. A New Framework and Software to Estimate Time-Varying Reproduction Numbers During Epidemics. American Journal of Epidemiology, Volume 178, Issue 9, 1 November 2013, Pages 1505–1512, <u>https://doi.org/10.1093/aje/kwt133</u>

VA Wastewater Data Update

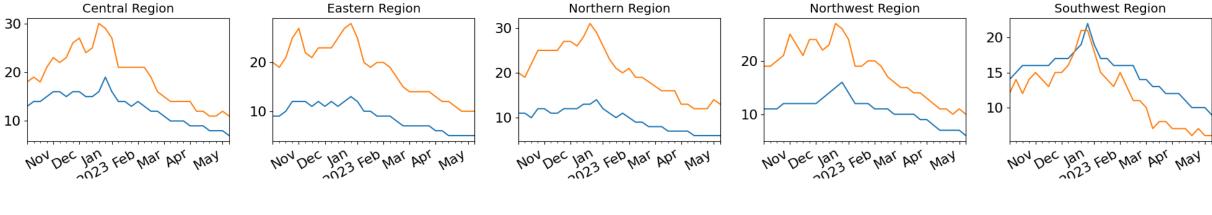
Classificati	ion																							n Viev	
Lowest																			l	Mo	st R	ecen	t6N	Nonths	
Lower	Site-S	Spe	eci	fic	P	ero	er	ntil	es	s by	y S	ar	np	lin	ıg	We	eel	<							
Middle																									
Higher		11/27/22	12/04/22	12/11/22	12/18/22	12/25/22	01/01/23	01/08/23	01/15/23	01/22/23	01/29/23	02/05/23	02/12/23	02/19/23	02/26/23	03/05/23	03/12/23	03/19/23	03/26/23	04/02/23	04/09/23	04/16/23	04/23/23	04/30/23	05/10/00
Highest	:	1/27	2/04	2/11	2/18	2/25	L/01	1/08	172	1/22	1/29	2/05	2/12	2/19	2/26	3/05	3/12	3/19	3/26	1/02	1/05	4/16	1/23	1/3C	1/2
Insuffic	ient Data	H	Ħ	Ħ	Ħ	Ĥ	ö	0	ö	0	0	0	0	0	ö	ö	ö	ö	0	ò	õ	õ	õ	õõ	õ
Central	Halifax																								
	Henrico																								
	Richmond																								Ú.
Eastern	Army Base																								1
	Atlantic-2																				Γ		Π		
	Boat Harbor																								
	James River																								Ú.
	Nansemond																								
	Onancock						Π														Г		Π		
	Virginia Initiativ																				Г				
	Williamsburg																				Г				
	York River																								
Far	Clintwood																Π								
Southwest	Coeburn Norton			Г	Π												Π	Π			Г	Π	Π		
	Hillsville						Π									п		Π	Π		F		Π		
	Lebanon	F					Π											Π			Г		Π		
	Pound	Г																			F				
	Tazewell																		Π		F		Π		
	Wolf Creek																	Π			F		Π		
Near	Blacksburg																								
Southwest	Low Moor						П		٦	П	٦						Π				Г				
	Lower Jackson																				F		Π		
	Lynchburg													Π						Π	F				
	Pepper's Ferry			Π																	F	Ξ	П		
	Roanoke						Ξ					Π			Π	П	Π	Ξ			Г	Ξ	F		11
	Rocky Mount					П	П	П	٦					П							F		Π		
Northern	Alexandria Renew															Π	Π		F	Π	Π	Π	Π		i i
	Arlington																								
	Broad Run																		٦	Ē					
	HL Mooney															Ξ							F		
	Upper Occoquan							Ē						Ē		F					F		Ē		
Northwest							Ē	Ē	٦	Ē	٦		Ē	Ē		F			F				F		
	Little Falls Run						Ē	5		Ē	Ē					E	F	F	٢	Ē	F	F	F		
	Moores Creek		Ē			Ē	Ē			Ē	۲		Ē	F	Ē	Ε		F	۲	F	F	F			
	North River						Ē			Ē	٢							F	۲				F		
	Parkins Mill																								


VDH COVID-19 Wastewater Surveillance

US Wastewater Monitoring

Wastewater provides a coarse estimate of COVID-19 levels in communities and can be a good indicator of activity levels

Percent of sites in each percent change category over time, United States*

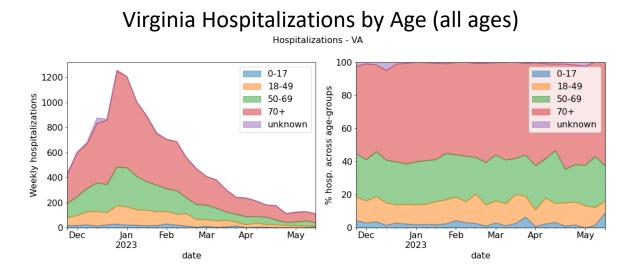


COVID-like Illness Activity

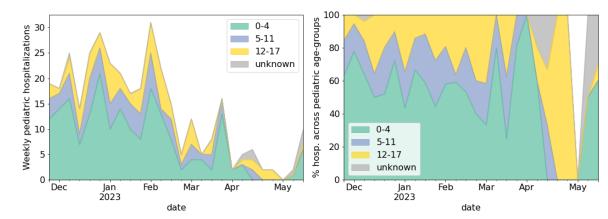
COVID-like Illness (CLI) gives a measure of COVID transmission in the community

- Emergency Dept (ED) based CLI is more correlated with case reporting
- Urgent Care (UC) is a leading indicator but may be influenced by testing for other URIs
- Levels continue to decline into lowest levels in past 8 months

MUNIVERSITY of VIRGINIA


COVID-19 Severity Metrics

Hospitalizations in VA by Age


Age distribution in hospitals relatively stable

- Uptick in hospitalizations mostly fueled by 70+ age group
- Pediatric hospitalizations level off after uptick last week

Pediatric Hospitalizations by Age (0-17yo)

Pediatric hospitalizations - VA

Note: These data are lagged and based on HHS hospital reporting

Data Source: Delphi and HHS

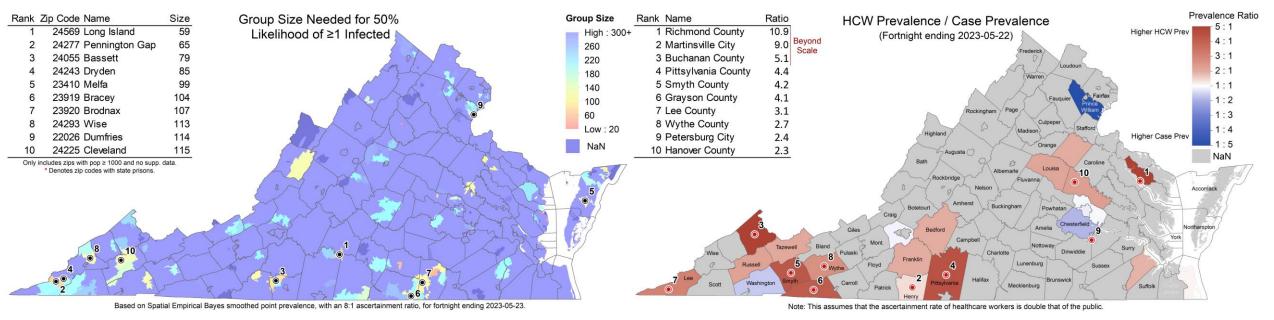
COVID-19 Spatial Epidemiology

ZIP Code level fortnightly case rate (per 100K)

New cases per 100k in the last fortnight by ZIP code

- Statewide COVID19 case rates remain at near historic lows.
- No zip codes with prisons are currently in the top 10.
- Areas with high case rates are sporadic; with slight clustering in Far SW and Southside.
- Rank Zip Code Name Rate Case Rates by ZIP Code Case Rate High : 3000+ 2.320 24569 Long Island (2023 - 05 - 23)24277 Pennington Gap 2,100 2000 24055 Bassett 1,730 1000 24243 Dryden 1,610 5 23410 Melfa 1,390 Low: 0Units = New Cases / 100.000 23919 Bracev 1.320 Contains 23920 Brodnax 1,290 Suppressed* 24293 Wise 1,220 Data 8 9 22026 Dumfries 1.210 24225 Cleveland 10 1,200 Only includes zips with pop ≥ 1000 and no supp. data. * Denotes zip codes with state prisons
- 794 of 896 ZIP codes report
 <500 fortnightly cases / 100k
- Some counts are low and suppressed to protect anonymity. They are shown with a red outline.

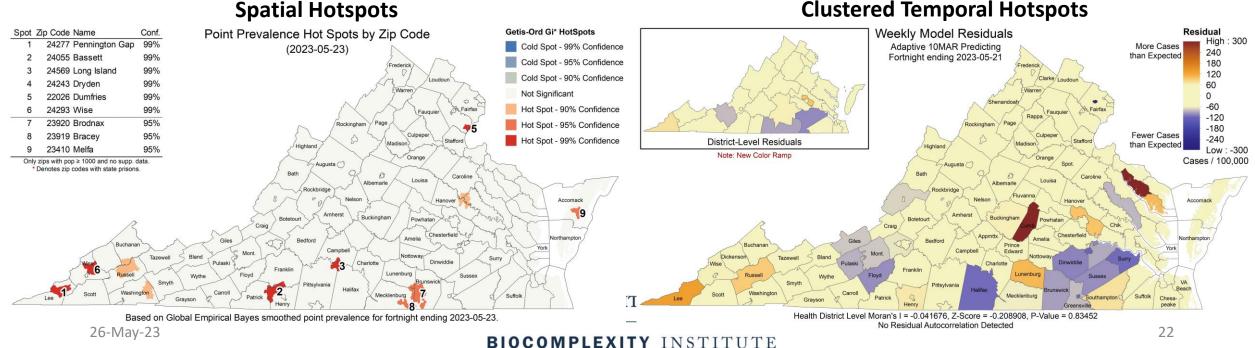
Based on Spatial Empirical Bayes smoothed point prevalence, with an 8:1 ascertainment ratio, for fortnight ending 2023-05-23.


UNIVERSITY of VIRGINIA

26-May-23

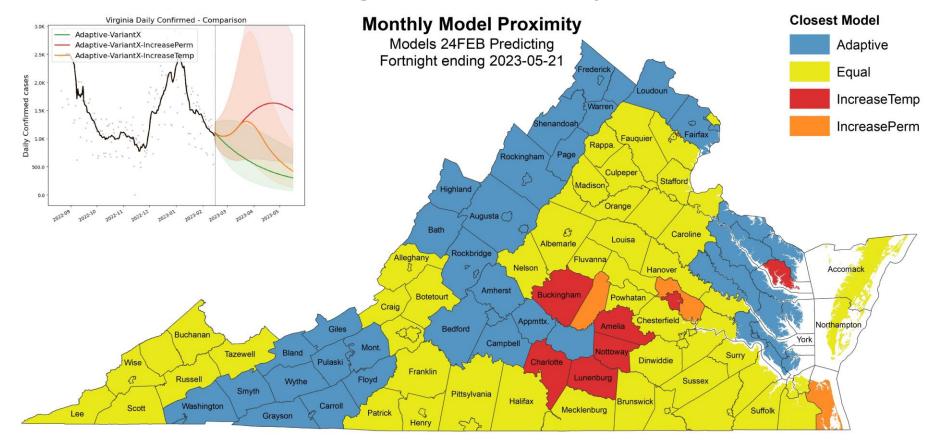
Risk of Exposure by Group Size and HCW prevalence

Case prevalence in the last fortnight by zip code used to calculate risk of encountering someone infected in a gathering of randomly selected people


- **Group Size**: Assumes **8 undetected infections** per confirmed case (ascertainment rate from recent seroprevalence survey) and shows minimum size of a group with a 50% chance an individual is infected by zip code (e.g., in a group of 59 in Long Island, there is a 50% chance someone will be infected).
- HCW ratio: Case rate among health care workers (HCW) in the last fortnight using patient facing health care workers as the numerator / population's case prevalence. High HCW ratios are concentrated in Southwest.

Current Hot-Spots

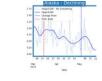
Case rates that are significantly different from neighboring areas or model projections


- **Spatial**: Getis-Ord Gi* based hot spots compare clusters of zip codes with fortnightly case prevalence higher than nearby zip codes to identify larger areas with statistically significant deviations
- **Temporal**: The weekly case rate (per 100K) projected last month compared to those observed by county, which highlights temporal fluctuations that differ from the model's projections.
- Low prevalence rates result in sporadic spatial hotspots. Minor model overpredictions seen in New River, Southside, and Crater; underpredictions in Henrico and Lenowisco. No residual autocorrelation detected.

Spatial Hotspots

Scenario Trajectory Tracking

Which scenario from three months ago did each county track closest?


- Fortnightly projections separate the scenarios more clearly and reveal overall patterns.
- Most counties still track the Adaptive (current course) scenario from late February.
- As with last report fewer than a dozen counties tracked the Increased Transmission scenarios. 26-May-23
 BIOCOMPLEXITY INSTITUTE
 2

COVID-19 Broader Context

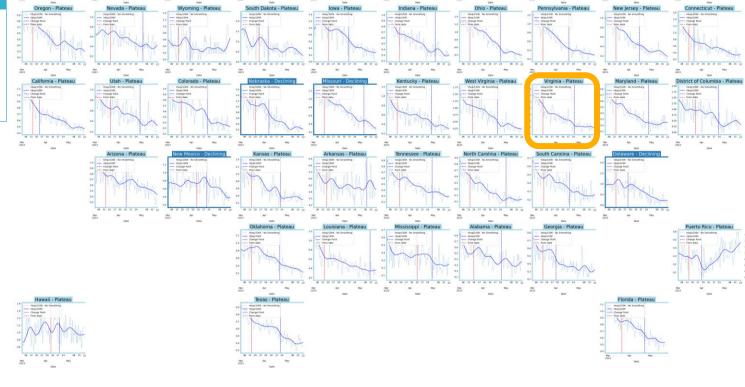
United States Hospitalizations

06 13 20 27 88 38 17 24 08 15 2

	US - Pisteau To bon the second secon	
Pinnesoto - Deciring Deciring and a second	Wisconsin - Plateau James and the transmission Michigan - Plateau James and the transmission James and the transmission Michigan - Plateau James and the transmission Michigan - Plateau James and the transmission James and the tra	Atsactures: space in the second secon
The second secon	Decomposition of the second se	
Total Section 2	Vest Virginia - Plateau Vest Vest Virginia - Plateau Vest Vest Vest Vest Vest Vest Vest Vest	Cuis

South Carolina - Platea

Apr

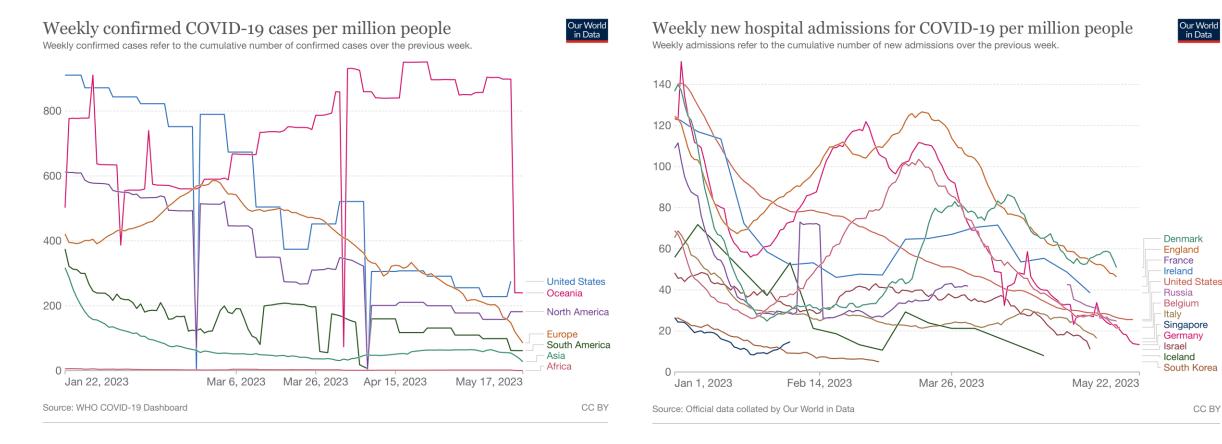

Georgia - Plateau

40 12 20 27 00 18 17 24 00 25 2

Mar. 2023

1662 2923

	Number o	f States					
Status	Current	Last					
	Week	Fortnight					
Declining	11	(14)					
Plateau	41	(36)					
Slow Growth	1	(3)					
In Surge	0	(0)					


erto Rico - Pla

Caste

Mar 2923 141 May Mag 2823

Around the World – Various trajectories

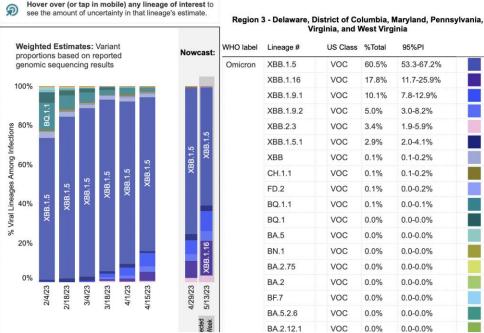
Confirmed cases

26-May-23

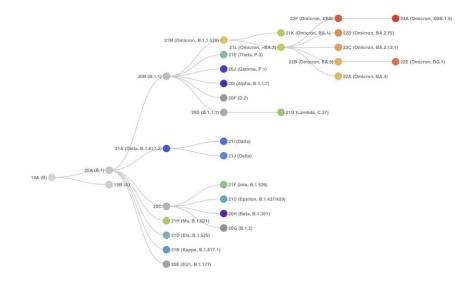
BIOCOMPLEXITY INSTITUTE

Hospitalizations

COVID-19 Genomic Update


SARS-CoV2 Variants of Concern

Emerging variants have potential to continue to alter the future trajectories of pandemic and have implications for future control


Variants have been observed to: increase transmissibility, increase severity • (more hospitalizations and/or deaths), and limit immunity provided by prior infection and vaccinations

Weighted and Nowcast Estimates in HHS Region 3 for 2-Week Periods in 1.. for 4/30/2023 - 5/13/2023

Nowcast Estimates in HHS Region 3

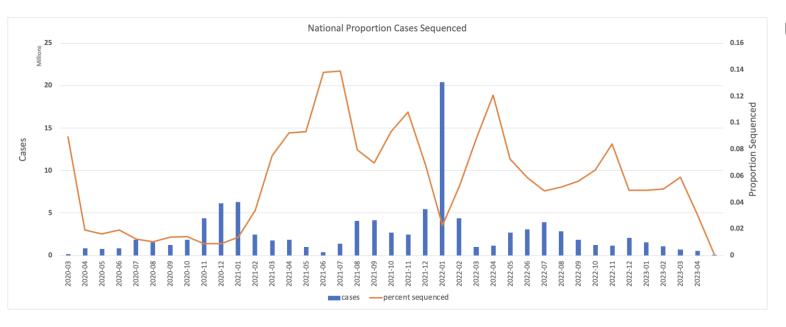
95%PI 53.3-67.2% 11.7-25.9% 7.8-12.9% 3.0-8.2% 1.9-5.9% 2.0-4.1%

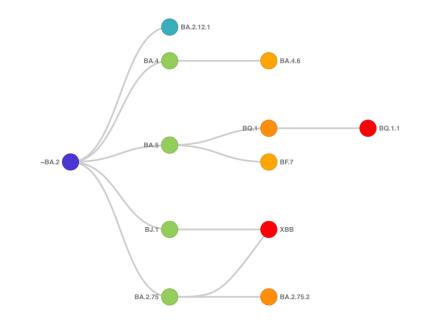
https://clades.nextstrain.org

Omicron Updates*

- XBB.1.5 proportions have fallen to 60% from 65%
- XBB.1.16.1 continues to grow to 18% from 15% last week
- XBB.1.9.X now at 15% up from 13% last week
- XBB.1.5.1 steady at ~3%
- XBB.2.3 now at 3.4% up from 2.8% after first being tracked

*percentages are CDC NowCast Estimates

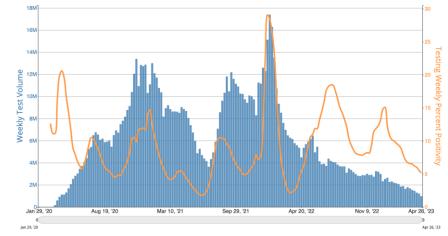



28

SARS-CoV2 Sequencing

Emerging variants have potential to continue to alter the future trajectories of pandemic and have implications for future control

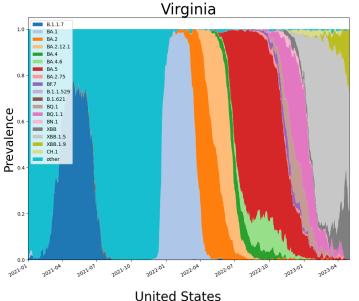
- Current proportion of cases being sequenced is on a downward trend nationally.
- Leveraging additional resources such as wastewater sequencing and adopting into existing infrastructure will be an important supplement



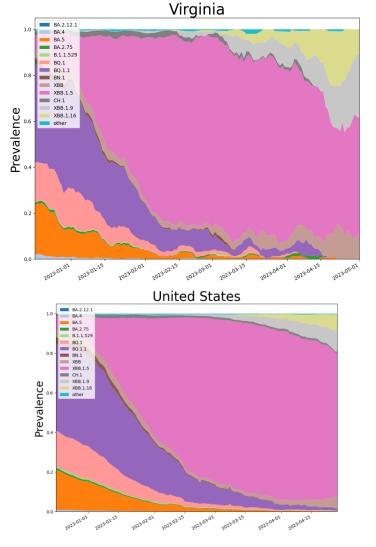
https://clades.nextstrain.org

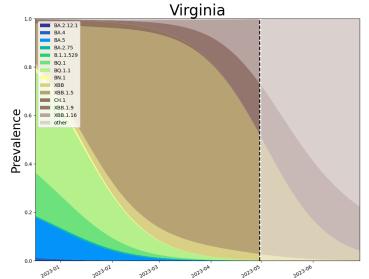
United States

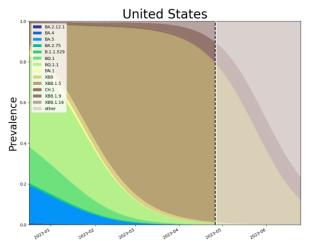
Weekly Nucleic Acid Amplification Tests (NAATs) Performed and COVID-19 Nucleic Acid Amplification Tests (NAATs) 7-day Percent Positivity in The United States Reported to CDC


https://covid.cdc.gov/covid-datatracker/#trends 7daytestresultsreported 7daytestingpositive 00

SARS-CoV2 Omicron Sub-Variants

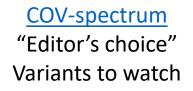

covSPECTRUM

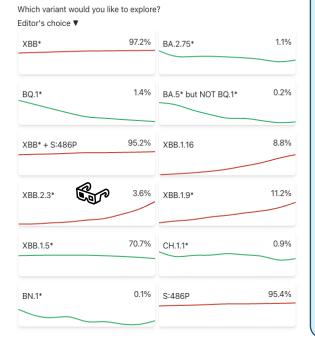

VoC Polynomial Fit Projections



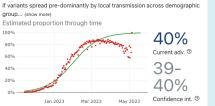
B.1.1.7 BA.1 BA.2 BA 2 12 1 BA.4 BA.4.6 BA 5 BA.2.75 BF.7 B.1.1.529 B.1.621 BQ.1 Prevalence BO.1.1 BN.1 XBB XBB.1.5 XBB.1.9 CH.1 other 0.2 2022-04 2022-20 2022-07 2021-10 2022.01 2023-01 2022-04 2022-07

As detected in whole Genomes in public repositories

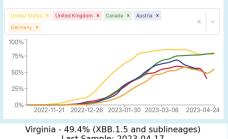


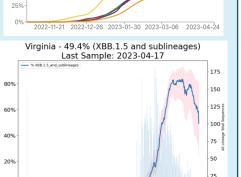

Note: Everything from dotted line forward is a projection.

26-May-23


SARS-CoV2 Omicron Sub-Variants

Known variants

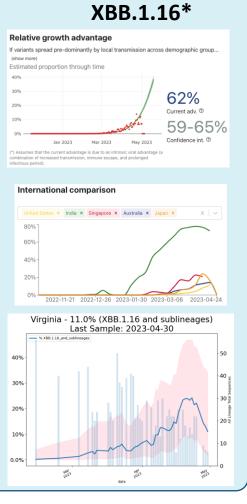



(*) Assumes that the current advantage is due to an intrinsic viral advantage (a combination of increased and prolonged infectious period).

International comparison

60%

0.0%



ppt 3

Mar

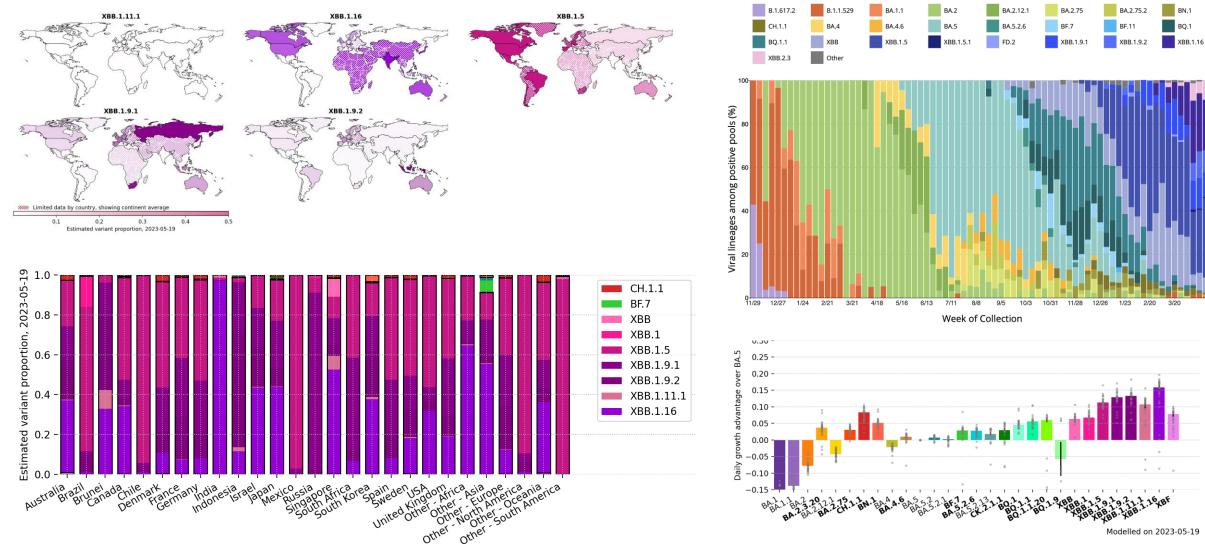
May 3

Enabled by data from **GISAID**

26-May-23

BIOCOMPLEXITY INSTITUTE

10%


0.0%

UNIVERSITY of VIRGINIA

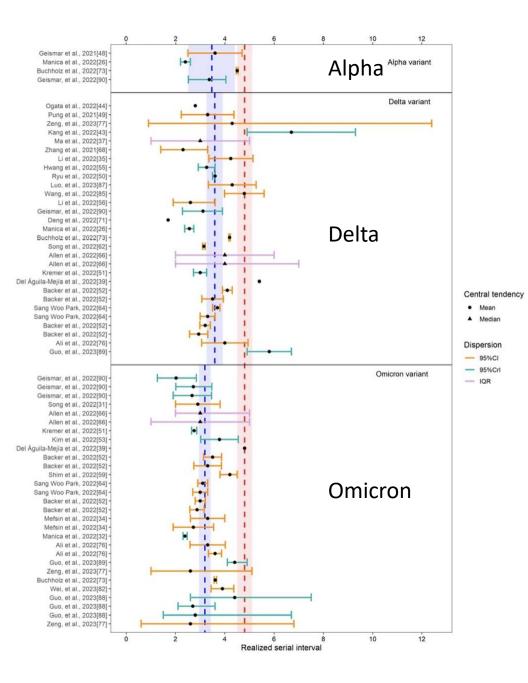
Oec 22

1an

Global SARS-CoV2 Variant Status

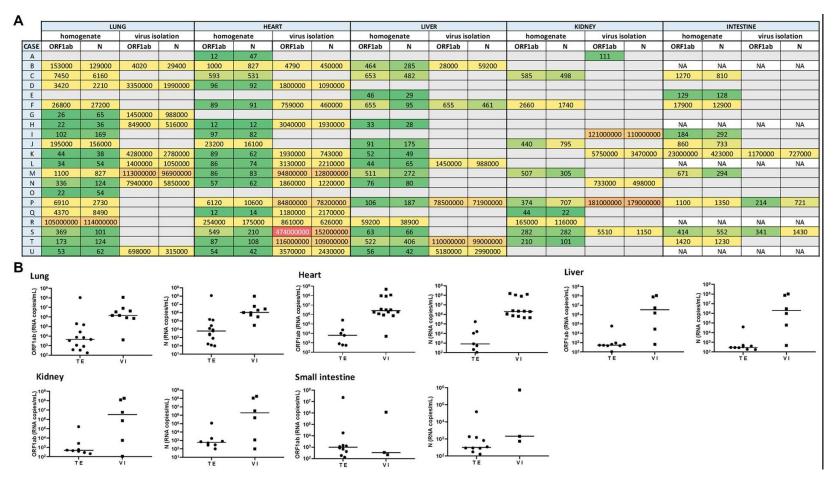
Variants Detected, by Collection Week

https://covid.cdc.gov/covid-data-tracker/#traveler-genomic-surveillance https://github.com/gerstung-lab/SARS-CoV-2-International (03/29/23)


Pandemic Pubs (May 25th, 2023)

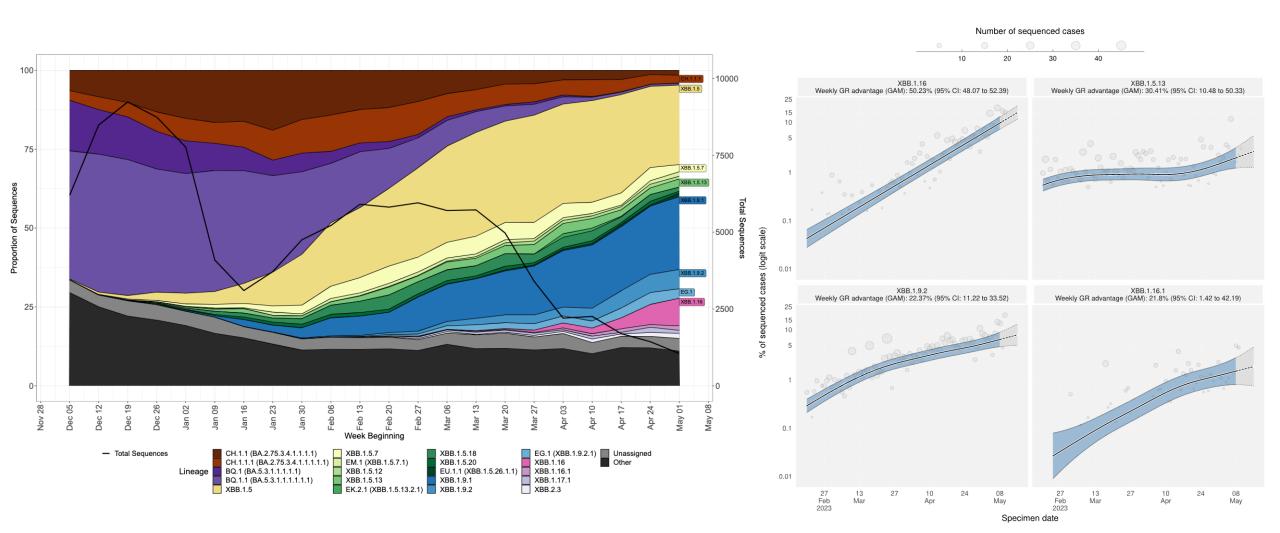
1. Meta-analysis derived pool of many household or contact tracing studies with well observed case series to further quantify the shortening of incubation and serial interval (time between infections) over time during the pandemic and across variants. Omicron's serial interval is shorter than Delta which was similar to Alpha.

Omicron had the shortest pooled estimates for the incubation period (3.63 days, 95%CI: 3.25-4.02 days), serial interval (3.19 days, 95%CI: 2.95-3.43 days), and realized generation time (2.96 days, 95%CI: 2.54-3.38 days) whereas the ancestral lineage had the highest pooled estimates for each of them . We found considerable heterogeneities (I2 > 80%) when pooling the estimates across different virus lineages, indicating potential unmeasured confounding from population factors (e.g., social behavior, deployed interventions).


MedRxiv

https://www.medrxiv.org/content/10.1101/2023.05.19.23290208v1

Pandemic Pubs (May 25th, 2023)


2. SARS-CoV-2 can spread to multiple tissues both after primary infection and reinfection. Further evidence of chronic infection leading to long Covid.

Researchers in Argentina autopsied 21 donors experience first infection or reinfection at time of death between January and August 2022. Their analysis shows persisting reservoirs of SARS-CoV-2 in multiple tissues including lungs, heart liver, kidneys and intestines with different characteristic loads after Omicron infection. Frequent causes of death included adult respiratory distress syndrome with bilateral lung compromise during COVID-19 as well as exacerbations of preexisting comorbidities and COVID-19. Genomes isolated from different tissues showed a remarkable amount of heterogeniety.

Pandemic Pubs (May 25th, 2023)

3. UKHSA prevalence and growth rate report shows a wide variety of variants and XBB.1.16 and XBB.1.19 having continued growth advantage

In the UK variant surveillance is now limited to individuals tested with PCR in hospitals with acute respiratory symptoms (plus a few research studies)

https://www.gov.uk/government/publications/sars-cov-2-genome-sequence-prevalence-and-growthrate/sars-cov-2-genome-sequence-prevalence-and-growth-rate-update-24-may-2023

Pandemic Pubs (May 11th, 2023)

1. Positive test results, emergency department visits, and COVID-19 deaths are suitable and timely indicators of trends in COVID-19 activity and severity.

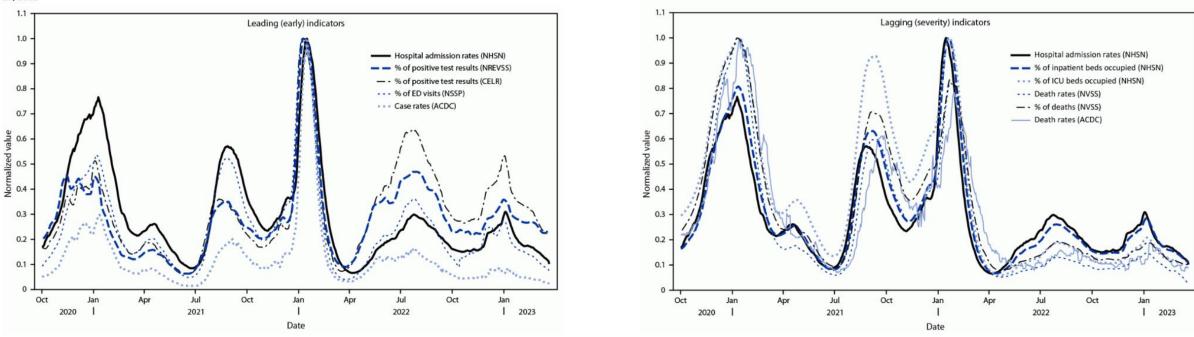
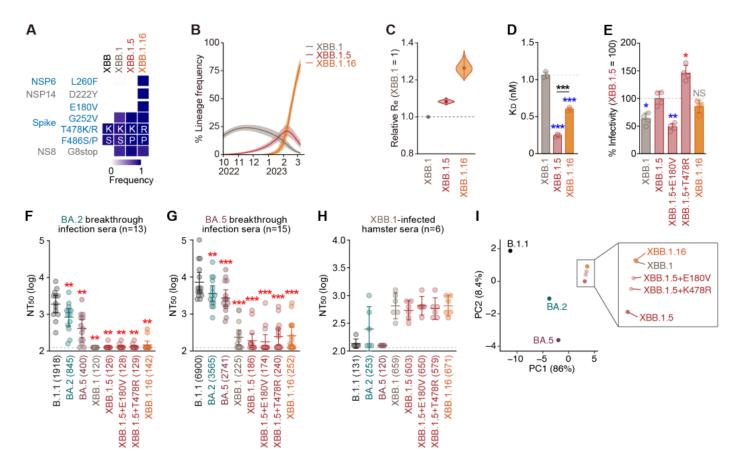
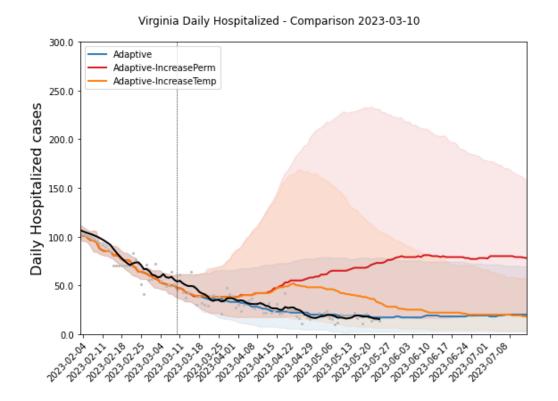



FIGURE. Trends in normalized values* of leading (A) and lagging (B)[†] COVID-19 surveillance indicators — United States, October 1, 2020–March 22, 2023

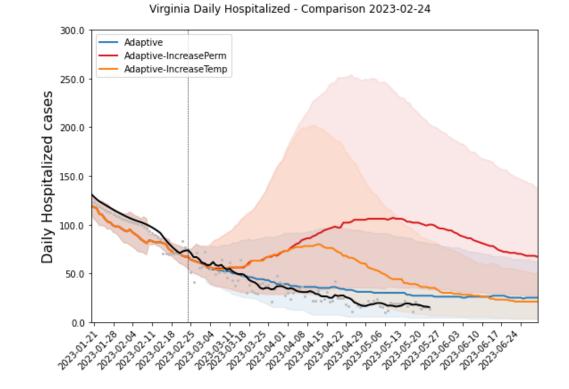
When the U.S. COVID-19 public health emergency declaration expires on May 11, 2023, national reporting of certain categories of COVID-19 public health surveillance data will be transitioned to other data sources or will be discontinued. Weekly COVID-19 Community Levels (CCLs) will be replaced with levels of COVID-19 hospital admission rates (low, medium, or high) which demonstrated >99% concordance by county during February 2022–March 2023. Authors suggest COVID-19–associated hospital admission levels are a suitable primary metric for monitoring COVID-19 trends

Pandemic Pubs (April 19th, 2023)

1. XBB.1.16 shows a similar resistance profile to XBB.1 and XBB.1, in that it is resistant to a variety of anti-SARS-CoV-2 antibodies from breakthrough infections. Scientists suggest this parity indicates it's growth advantage may come from some other transmission property such as a change in antigenicity or in viral growth efficiency.


Scientists in Japan characterized the antibody neutralization of XBB.1.16. Panels F, G, H indicate as similar neutralization profile to other XBB variants relative to breakthrough infections. Panels D and E show the ACE2 binding affinity and infectivity respectively. A change in antigenicity relative to XBB 1.5 is inferred from a PCA of neutralization assays F and G (neutralization cartography).

Model Results


Past projections – Hospitalizations

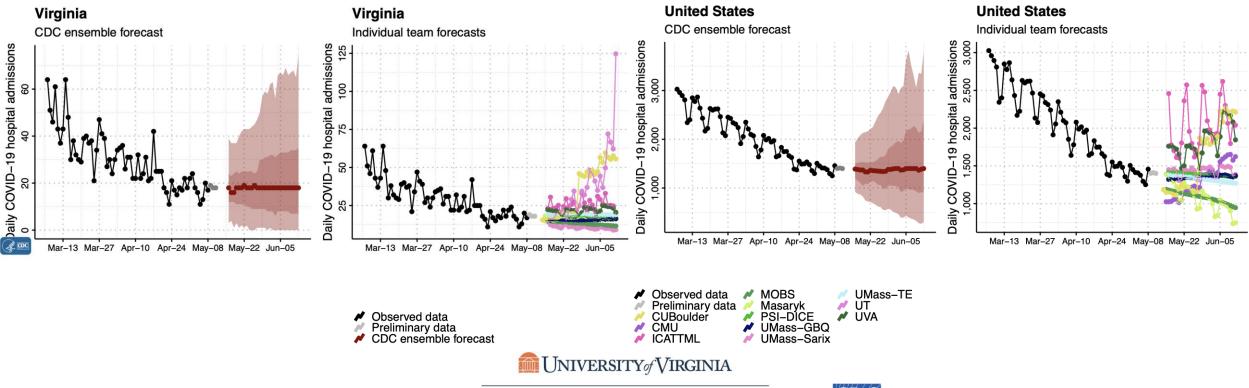
- Previous projections remain on target with recent observations
- Past 10 weeks have stayed steady and indicate no increases in transmissions

Previous round – 10 weeks ago

Previous round – 12 weeks ago

26-May-23

National Modeling Hub Updates



Current COVID-19 Hospitalization Forecast

Statistical models for submitting to CDC COVID Forecasting Hub

 Uses a variety of statistical and ML approaches to forecast weekly hospital admissions for the next 4 weeks for all states in the US

Hospital Admissions for COVID-19 and Forecast for next 4 weeks (CDC COVID Ensemble)

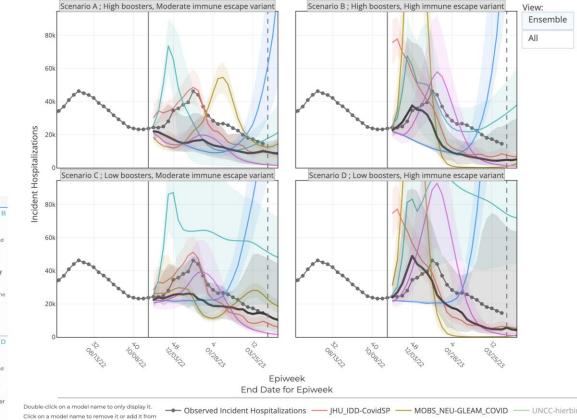
BIOCOMPLEXITY INSTITUTE

CDC COVID Forecast

41

Scenario Modeling Hub – COVID-19 (Round 16)

to zoom-out)


Collaboration of multiple academic teams to provide national and state-by-state level projections for 4 aligned scenarios

- Round 16 results published
- Moderate escape scenarios tracking best
- Round 17 is underway, prelim results in coming weeks

	"Level 5" Variants	"Level 6/7" Variants	
Accelerating uptake levels of reformulated boosters	*Level 5* Variants Scenario A - Variants have a 25% immune escape from BA.5.2 - Seeding based on combined observed prevalence of Level 5 variants at the start of the projection period - No change in severity given symptomatic infection	*Level 6/7* Variants Scenario B - Variants have a 50% immune escape from BA.5.2 - Seeding based on combined observed prevalence of Level 6 and 7 variants at the start of the projection period - No change in severity given symptomatic infection	
	Accelerating uptake levels of reformulated boosters, with coverage plateauing at 90% of flu vaccination levels by February 1st, 2023 - Teams are free to use available data and information from current and previous rollouts as tehy see fit to define rates - Teams should assume increasing uptake through October and November as necessary to reach the projected February 1st, 2022 plateau	rs, with coverage plateauing at 90% of ination levels by February 1st, 2023 are free to use available data and information rent and previous rollouts as tehy see fit to define and November as necessary to reach the of Cober and November as necessary to reach the	
Current uptake levels of reformulated boosters	Level 5" Variants Scenario C 'Variants have a 25% immune escape from BA.5.2 Seeding based on combined observed prevalence of Level 5 variants at the start of the projection period No change in severity given symptomatic infection	*Level 6/7* Variants Scenario D - Variants have a 50% immune escape from BA.5.2 - Seeding based on combined observed prevalence of Level 6 and 7 variants at the start of the prejection period - No change in severity given symptomatic infection	
	Current uptake levels of reformulated boosters, with coverage plateauing at booster 1 levels by the end of the simulation - Teams are free to use available data and information from current and previous rollouts as tehy see fit to define rates - Based on current rates, plateau date is flexible as long as it occurs before the end of the simulation [Teams can adjust rates up if needed to achieve adequate coverage by target date)	1 levels by the end of the simulation - Teams are free to use available data and information from current and previous rollouts as tehy see fit to define rates	

https://covid19scenariomodelinghub.org/viz.html

Projected Incident Hospitalizations by Epidemiological Week and by Scenario for Round 16 - US (- Projection Epiweek; -- Current Week)

n in the graph by click and drag (double-click — USC-SIKJalpha — UTA-ImmunoSEIRS — UVA-adaptive — Ensemble_LOP_untrimmed

Scenario Modeling Hub – COVID-19 (Round 17)

Collaboration of multiple academic teams to provide national and state-by-state level projections for 6 aligned scenarios

- Preliminary Results
- Round Designed to explore different seasonal vaccination levels and the impact of Immune Escape

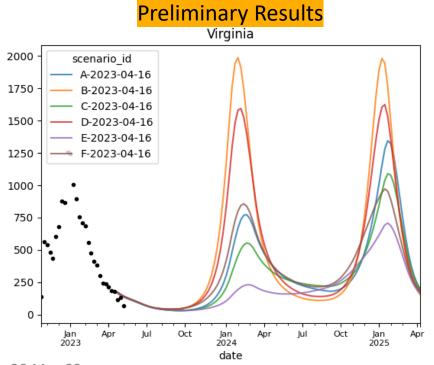
Scenario Dimensions:

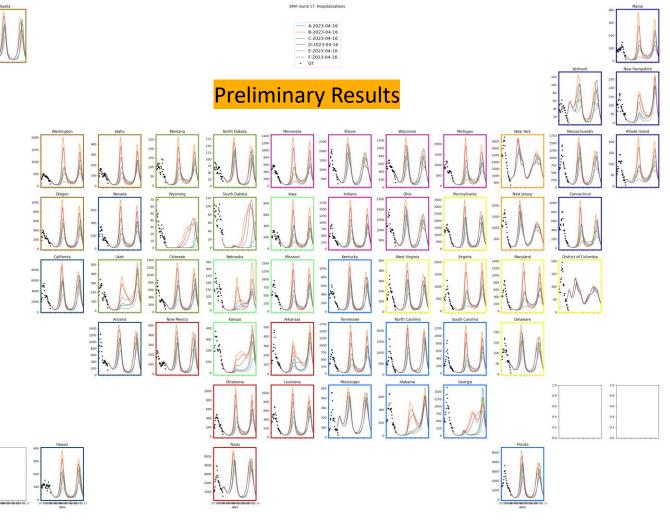
Immune Escape (IE):

Slower IE (20%/yr) vs. Faster IE (50%/yr)

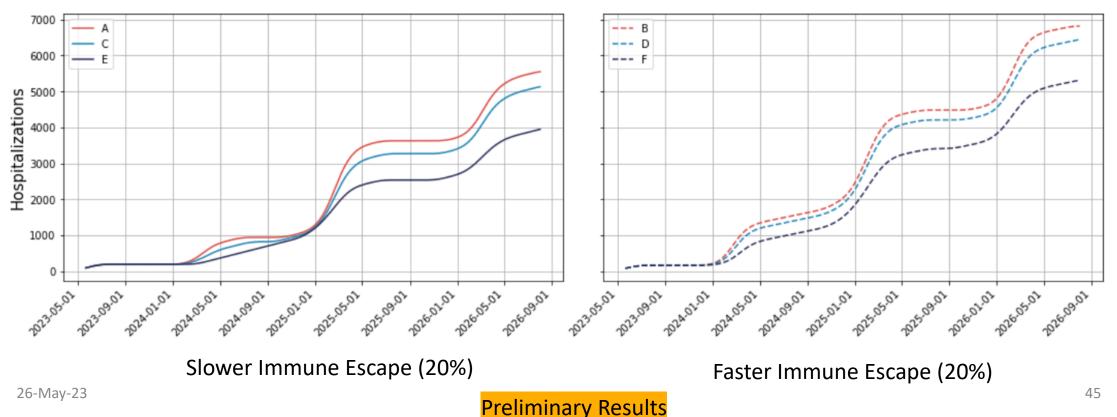
Vaccination levels:

None vs. Vulnerable and 65 + vs. Broader population of eligible https://covid19scenariomodelinghub.org/viz.html

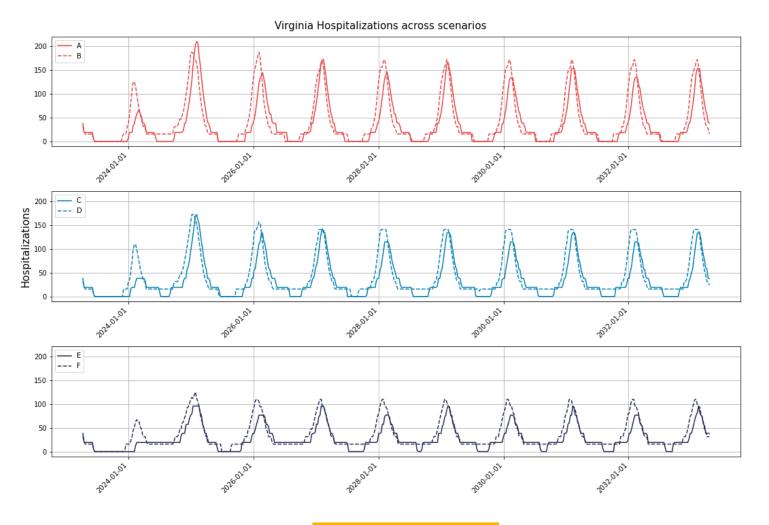

	 Low immune escape Immune escape occurs at a constant rate of 20% per year 	 High immune escape Immune escape occurs at a constant rate of 50% per year
 No vaccine recommendation Uptake negligible or continues at very slow levels based on existing 2022 booster trends 	Scenario A	Scenario B
 Reformulated annual vaccination recommended for 65+ and immunocompromised Reformulated vaccine has 65% VE against variants circulating on June 15 Vaccine becomes available September 1 Uptake in 65+ same as first booster dose recommended in September 2021 Uptake in individuals under 65 negligible or continues to trickle based on 2022 booster trends 	Scenario C	Scenario D
 Reformulated annual vaccination recommended for all currently eligible groups Reformulated vaccine has 65% VE against variants circulating on June 15 Vaccine becomes available September 1 65+ uptake same as first booster dose recommended in September 2021 Coverage in individuals under 65+ saturates at levels of the 2021 booster (approximately 34% nationally) 	Scenario E	Scenario F


UVA model – Preliminary Results (Round 17)

 Vaccination drives down hospitalizations


• Broad population vax levels akin to bivalent booster significantly reduce hospitalizations

UVA model – Preliminary Results (Round 17)


- Cumulative hospitalizations over 2 years shows spread across vaccination levels
- Broad annual vaccination campaign reduces hospitalizations by 27% over 2 years

Virginia Hospitalizations across scenarios

UVA model – Preliminary Results (Round 17)

- Peak timing and size can oscillate over the longer term
- These scenarios are very unlikely to remain stable over longer term, nonetheless, some of these patterns may remain
- Scenarios with faster immune escape (dashed) converge more quickly than the slower immune escape

Preliminary Results

Key Takeaways

Projecting future cases precisely is impossible and unnecessary. Even without perfect projections, we can confidently draw conclusions:

- Case rates and hospitalizations have entered a plateau at a steady low level
- Nearly all indicators point to this trend continuing in near term
- Long term projections that assume a seasonal trend in the winter show impact of vaccine coverage and slow vs. fast evolution of immune escape
 - Broad annual vaccination campaign reduces hospitalizations by 27% over 2 years

Model Updates

• Projected Trajectories from previous rounds remain on target, no new projections made this round

Questions?

Points of Contact

Bryan Lewis brylew@virginia.edu

Srini Venkatramanan srini@virginia.edu

Madhav Marathe marathe@virginia.edu

Chris Barrett ChrisBarrett@virginia.edu

Biocomplexity COVID-19 Response Team

Aniruddha Adiga, Abhijin Adiga, Hannah Baek, Chris Barrett, Golda Barrow, Richard Beckman, Parantapa Bhattacharya, Jiangzhuo Chen, Clark Cucinell, Patrick Corbett, Allan Dickerman, Stephen Eubank, Stefan Hoops, Ben Hurt, Ron Kenyon, Brian Klahn, Bryan Lewis, Dustin Machi, Chunhong Mao, Achla Marathe, Madhav Marathe, Henning Mortveit, Mark Orr, Joseph Outten, Akhil Peddireddy, Przemyslaw Porebski, Erin Raymond, Jose Bayoan Santiago Calderon, James Schlitt, Samarth Swarup, Alex Telionis, Srinivasan Venkatramanan, Anil Vullikanti, James Walke, Andrew Warren, Amanda Wilson, Dawen Xie

