Network Systems Science & Advanced Computing Biocomplexity Institute & Initiative University of Virginia

Foresight and Analysis of Infectious Disease Threats to Virginia's Public Health

January 11th, 2024

(data current to Jan 3rd – Jan 10th) Biocomplexity Institute Technical report: TR BI-2024-4

UNIVERSITY *of* **VIRGINIA**

BIOCOMPLEXITY INSTITUTE

biocomplexity.virginia.edu

About Us

- Biocomplexity Institute at the University of Virginia
 - Using big data and simulations to understand massively interactive systems and solve societal problems
- Over 20 years of crafting and analyzing infectious disease models
 - Pandemic response for Influenza, Ebola, Zika, and others

Points of Contact

Bryan Lewis brylew@virginia.edu

Srini Venkatramanan srini@virginia.edu

Madhav Marathe marathe@virginia.edu

Chris Barrett ChrisBarrett@virginia.edu

Model Development, Outbreak Analytics, and Delivery Team

Abhijin Adiga, Aniruddha Adiga, Hannah Baek, Chris Barrett, Parantapa Bhattacharya, Chen Chen, Da Qi Chen, Jiangzhuo Chen, Baltazar Espinoza, Galen Harrison, Stefan Hoops, Ben Hurt, Gursharn Kaur, Brian Klahn, Chris Kuhlman, Bryan Lewis, Dustin Machi, Madhav Marathe, Sifat Moon, Henning Mortveit, Mark Orr, Przemyslaw Porebski, SS Ravi, Erin Raymond, Samarth Swarup, Pyrros Alexander Telionis, Srinivasan Venkatramanan, Anil Vullikanti, Andrew Warren, Amanda Wilson, Dawen Xie

Overview

• **Goal**: Understand impact of current and emerging Infectious Disease threats to the Commonwealth of Virginia using modeling and analytics

• Approach:

- Provide analyses and summaries of current infectious disease threats
- Survey existing forecasts and trends in these threats
- Analyze and summarize the current situation and trends of these threats in the broader context of the US and world
- Provide broad overview of other emerging threats

Key Takeaways

Most COVID-19 indicators show signs of slowing growth

- Case and Hospitalization remain elevated but may be leveling off
- Other indicators also indicate high levels that may be leveling off as well
- Wastewater indicators are high but have show signs of stabilization
- This suggest we may be nearing the Peak of COVID-19 activity.

Influenza remains very high and growing, though the rate of growth may be slowing

RSV activity has leveled off and may be slowing

COVID-19 Surveillance

District Diagnosed COVID Trajectories – last 10 weeks

Status	Number of Districts		
Status	Current Week	Last week	
Declining	4	NA	
Plateau	7	NA	
Slow Growth	13	NA	
In Surge	11	NA	

Curve shows smoothed Emergency Dept and Urgent Care visits with Diagnosed COVID-19 rate (per 100K) in each District

> Nov 2023

West Piedmont - Platea

Trajectories of states in label & chart box Curve colored by Reproductive number

Mount Rogers - Platea

District Hospital Trajectories – last 10 weeks

Rt estimates from EpiNow2

1/12/2024

MUNIVERSITY of VIRGINIA

District Case Trajectories – last 10 weeks

<u>Rt estimates from EpiNow2</u>

Status	Number of Districts		
Status	Current Week	Last week	
Declining	9	(3)	
Plateau	1	(4)	
Slow Growth	19	(17)	
In Surge	5	(11)	

Curve shows smoothed case rate (per 100K) Trajectories of states in label & chart box Case Rate curve colored by Reproductive number

MIVERSITY of VIRGINIA

District Case Trajectories – Recent 6 months

BIOCOMPLEXITY INSTITUTE

COVID-19 Spatial Epidemiology

ZIP Code Level Case Rates Since Last Meeting

New cases per 100k in the last four weeks

- Divide rates by four to calculate average weekly incidence.
- No change in color scale from last meeting.
- Hanover and Burkeville ٠ represent ZIP codes with state prisons.
- Case rates are elevated across the Commonwealth most notably in Far SW in **Buchanan County.**
- Northern Virginia and area. around Hampton Roads have lower case rates.

Rank	Zip Code Name	Rate	Case Rates by ZIP Code	Case Rate
1	23069 Hanover*	17,980	(2023-12-13 to 2023-01-09)	High :
2	24656 Vansant	16,790		8000
3	24620 Hurley	16,350	Beyond Stranger	4000
4	23413 Nassawado	x 15,550	Scale	4000
5	24083 Daleville	13,920	M T & T & o So	Low : (
6	24614 Grundy	13,840	A A A A A A A A A A A A A A A A A A A	Units = New Cases
7	23922 Burkeville*	11,280		Contai
8	24290 Weber City	11,050		Data
9	24314 Bastian	11,040	and a surrey of a	
10	24228 Clintwood	10,680	the offer the second	
Only inc	cludes zips with pop ≥ 1000 and n	o supp. data.	r R & C V St	
	Denotes zip codes with state pri	SONS.		7
			B B P P P P P P P P P P P P P P P P P P	
),	2		the second many and the	4-1-5
,	S OF	፦ እ	5 m gur have the house	
	10 2 0	5	tor the the stand to	S Partie
			o so have be and o so the	
	here have a second	Last	and have have the the	
C		1	A find I share the the	mar and a second
J	8			125.1

Based on Spatial Empirical Bayes smoothed case rates, with an 8:1 ascertainment ratio, for four weeks ending 2024-01-09.

UNIVERSITY of VIRGINIA

BIOCOMPLEXITY INSTITUTE

High : 12000+

Low:0 New Cases / 100.000 Contains

Suppressed* Data

Risk of Exposure / Spatial Clusters and Hot Spots

Case rates since last meeting by ZIP code used to calculate risk of encountering someone infected in a gathering of randomly selected people and find spatial hot spots

- Group Size: Assumes 8 undetected infections per confirmed case (ascertainment rate from recent seroprevalence survey) and shows minimum size of a group with a 50% chance an individual is infected by zip code (e.g., in a group of 14 in Hanover, there is a 50% chance someone will be infected).
- **Spatial Clustering**: Getis-Ord Gi* based hot spots compare clusters of ZIP codes with four-week case rates higher than nearby zip codes to identify larger areas with statistically significant deviations. SaTScan was used to corroborate this analysis and determine relative risk for identified clusters.

COVID-19 among Healthcare Workers

COVID-19 case rates for the public and for healthcare workers (HCW) were compared to find regions where HCW suffered unusually high burdens of disease

- HCW Rate: Case rate among health care workers (HCW) over a four-week period ending January 8, 2024.
- HCW Ratio: Case rate among health care workers (HCW) over the same period using patient facing health care workers as the numerator, and the population's case rate as the denominator.
- An unusually small number of counties reported a high HCW/case prevalence ratio this month. This implies the public is generally experiencing higher rates of COVID19 than healthcare workers.

COVID-19 Broader Context

United States Hospitalizations

Status Current Week Declining 2 Plateau 9 **Slow Growth** 25 In Surge 17

1/12/2024

16

United States Hospitalizations – COVID Epidemic Growth

Around the World – Hospital Admissions

Our World <u>Our World in Data</u>

COVID-19 Growth Metrics

Estimating Daily Reproductive Number – VDH report dates – EpiNow2 estimation Re from VDH

Reproductive Estimate Summary as of January 9, 2024

Region	Reproductive number estimate	IQR	Trend forecast
State-wide cases	0.93	(0.81 - 1.1)	Likely decreasing
State-wide hosps	1.1	(0.95 – 1.1)	Likely increasing
Central	0.82	(0.67 - 0.96)	Decreasing
Eastern	1.0	(0.85 - 1.1)	Stable
Far SW	0.88	(0.72 – 1.1)	Likely decreasing
Near SW	0.92	(0.75 – 1.1)	Likely decreasing
Northern	1.0	(0.88 – 1.1)	Stable
Northwest	1.0	(0.84 – 1.2)	Likely increasing

Re from VDH Cases (last 6 months)

Methodology

- Sam Abbott, Joel Hellewell, Katharine Sherratt, Katelyn Gostic, Joe Hickson, Hamada S. Badr, Michael DeWitt, Robin Thompson, EpiForecasts, Sebastian Funk (2020). EpiNow2: Estimate Real-Time Case Counts and Time-Varying Epidemiological Parameters. doi:10.5281/zenodo.3957489.
- Serial interval, generation time, and incubation period built into COVID disease model via EpiNow2.
- Uses confirmation date but report date biases are better accounted for; estimated date of infection is inferred using Bayesian smoothing techniques and used to produce Rt estimates.
- Note: most recent data point for hospitalizations is 3 days prior to that of cases (HHS hospitalization through 1/6/24 vs. VDH case data through 1/9/24).

Wastewater Monitoring – VA Sites

Wastewater provides a coarse early warning of COVID-19 levels in communities

• Some VA sites (esp. Eastern) are starting to shift to higher quintiles in wastewater percentile groups

From: https://www.vdh.virginia.gov/coronavirus/see-the-numbers/covid-19-data-insights/sars-cov-2-inwastewater/#surveillance-trend 21

Wastewater Monitoring – NWSS

Wastewater provides a coarse estimate of COVID-19 levels in communities

- VA back to "Moderate" after being "Very High" due to artifacts last week
- Pervious, well observed, levels below region and national levels

BIOCOMPLEXITY INSTITUTE

Territories GU PR VI

Current SARS-CoV-2 Wastewater Viral Activity Level

Select a level to add or remove it from the visualization

Data Source: CDC Data Tracker

Virginia Regional Wastewater Variant Status (median)

1.0 -

Data updated through 12/10

Virginia Regional Population-Weighted Wastewater Variant Status

Near Southwest COVID-19 Genomic Pop-Weighted Prevalence 1.0 BA.2.86 FL.1 HK.3 HV.1 Other XBB.1.16 XBB.1.5 XBB.1.9 XBB.2.3 0.0 – Aug 2023 Oct Dec Sep Nov

Eastern COVID-19 Genomic Pop-Weighted Prevalence

Data updated through 12/10

Virginia Wastewater BA.2.86* Progress

VA Health Region	Site	Date	Prevalence of BA.2.86*
Central	Richmond	12/3/2023	0.18%
Central	Richmond	12/10/2023	22.87%
Eastern	Nansemond	12/10/2023	0.36%
Eastern	Williamsburg	12/3/2023	0.25%
Far Southwest	Coeburn Norton Wise	12/10/2023	0.82%
Far Southwest	Hillsville	12/10/2023	7.49%
Far Southwest	Wolf Creek	12/3/2023	1.74%
Far Southwest	Wolf Creek	12/10/2023	10.67%
Near Southwest	Blacksburg	12/3/2023	37.25%
Near Southwest	Blacksburg	12/10/2023	52.83%
Near Southwest	Lynchburg	12/3/2023	12.90%
Near Southwest	Lynchburg	12/10/2023	23.18%
Near Southwest	Pepper's Ferry	12/3/2023	23.94%
Near Southwest	Roanoke	12/3/2023	10.02%
Near Southwest	Roanoke	12/10/2023	22.52%
Northern	Alexandria Renew	12/3/2023	34.08%
Northern	Alexandria Renew	12/10/2023	56.60%
Northern	Aquia	12/3/2023	25.06%
Northern	Little Falls Run	12/10/2023	22.93%
Northern	Loudoun	12/3/2023	25.74%
Northern	HL Mooney	12/3/2023	30.77%
Northern	HL Mooney	12/10/2023	23.27%
Northern	Upper Occoquan	12/3/2023	28.45%
Northern	Upper Occoquan	12/10/2023	36.42%
Northwest	Moores Creek	12/3/2023	13.52%
Northwest	Moores Creek	12/10/2023	29.82%
Northwest	North River	12/3/2023	10.83%
Northwest	North River	12/10/2023	36.87%
Northwest	Parkins Mill	12/3/2023	13.49%
Northwest	Parkins Mill	12/10/2023	1.89%
1/12/2024			25

Hospitalizations in VA by Age

Age distribution in hospitalization remain relatively stable

- Data up to end of December
- All age groups show increase in hospitalizations
- Pediatric hospitalizations achieve highest level since last winter

Note: These data are lagged and based on HHS hospital reporting

Virginia Hospitalizations by Age (all ages) Hospitalizations - VA 100 1000 0-17 0-17 18-49 18-49 -groups 80 50-69 50-69 Weekly hospitalization 800 70+ 70+ ageunknown 60 unknown 600 across 40 400 % hosp. 20 200 Sep Oct Dec Sep Oct Nov Dec Aug Nov Aug 2023 2023 date date

Pediatric Hospitalizations by Age (0-17yo)

Pediatric hospitalizations - VA

Data Source: <u>Delphi</u> and <u>HHS</u>

COVID-like Illness Activity

COVID-like Illness (CLI) gives a measure of COVID transmission in the community

- Emergency Dept (ED) based CLI is more correlated with case reporting
- Urgent Care (UC) is a leading indicator but may be influenced by testing for other URIs
- CLI remains reduced and plateaued in most regions, with Southwest showing slow continued growth
- Levels returning to spring-time levels in most regions

ED & UC Visits with Diagnosed COVID-19

National Syndromic Surveillance Program (NSSP) reports diagnosed COVID-19 from multiple healthcare settings

- Diagnosed visits are a smoother more specific indicator than COVID-like Illness
- After 2 months of growth, Diagnosed visits show signs of receding

MUNIVERSITY of VIRGINIA

Current COVID-19 Hospitalization Forecast

Statistical models for submitting to CDC COVID Forecasting Hub

 Uses a variety of statistical and ML approaches to forecast weekly hospital admissions for the next 4 weeks for all states in the US

Hospital Admissions for COVID-19 and Forecast for next 4 weeks (CDC COVID Ensemble)

COVID-19 Genomic Update

SARS-CoV2 Variants of Concern

Emerging variants have potential to continue to alter the future trajectories of pandemic and have implications for future control

• Variants have been observed to: increase transmissibility, increase severity (more hospitalizations and/or deaths), and limit immunity provided by prior infection and vaccinations

Weighted Estimates in HHS Region 3 for 2-Week Periods in 9/17/2023 – 1/6/2024

Nowcast Estimates in HHS Region 3 for 12/24/2023 – 1/6/2024

Omicron Updates*

- BA.2.86* (JN.1) at 58.5% continues to displace
 XBB sublineages
- Lineage HV.1 (XBB.1.9*) down to 16.8 from 35%
- EG.5 (XBB.1.9*) downward 2.3 from 8%
- FL.1.5.1 (XBB.1.9*) downward 1.2 from 4.7
- HK.3 still holding down to 3.7 from 7% *percentages are CDC NowCast Estimates

cov-2-genome-sequence-prevalence-and-growth-rate-update-6-december-2023

SARS-CoV2 Omicron Sub-Variants

Enabled by data from **GISAID**

VoC Polynomial Fit Projections

United States B.1.1.529 BQ.1 XBB XBB.1.5 CH.1 XBB.1.9 XBB.1.16 XBB.2.3 EG.5 FL.1.5 BA.2.86 Note: HK.1 HV.1 other 023-12 33

Everything from dotted line forward is a projection.

SARS-CoV2 Omicron Sub-Variants

Enabled by data from GISAID

Global SARS-CoV2 Variant Status

123/23

1/12/2024

Week of Collection

https://cov.lanl.gov/components/sequence/COV/sparks.comp https://covid.cdc.gov/covid-data-tracker/#traveler-genomic-surveillance

11/27/23

2118123

National Wastewater Variant Status

Virginia Regional Wastewater Variant Status (median)

Data updated through 12/10

Virginia Regional Population-Weighted Wastewater Variant Status

Eastern COVID-19 Genomic Pop-Weighted Prevalence

Data updated through 12/10

COVID-19 Literature Updates

Pandemic pubs

UKHSA study looked at the Case Fatality Risk by vaccination status and time since last dose for COVID-19 between 28 May 2020 and 28 February 2022. CFR was highest in unvaccinated 80+ group. CFR was lowest in vaccinated populations within 6 months of last dose.

1/12/2024

https://journals.sagepub.com/doi/10.1177/01410768231216332

Pandemic pubs

An estimated 5–10% of subjects surviving COVID-19 develop "Long COVID" or PCC. Researchers in Spain conducted a 2-year prospective cohort study 548 individuals, 341 fulfilling the WHO PCC definition surviving COVID-19. Researchers found clusters of symptomology among those surveyed. "In the model with the best fit, subjects who were male and had tertiary studies were less likely to develop PCC, whereas a history of headache, or presence of tachycardia, fatigue, neurocognitive and neurosensitive complaints and dyspnea at COVID-19 diagnosis predicted the development of PCC."

https://www.thelancet.com/journals/lanepe/article/PIIS2666-1/12/2024 7762(23)00143-6/fulltext#%20

Increased risk

Influenza Update

Current Influenza Situation – ILI Activity

A Weekly Influenza Surveillance Report Prepared by the Influenza D

Region 3 Influenza Activity is above threshold

Percentage of Outpatient Visits for Respiratory Illness Reported by The U.S. Outpatient Influenza-like Illness Surveillance Network (ILINet),

- Virginia is now in "Moderate" level of Influenza activity
- National ILI activity remains above threshold after and continues to grow
- Most regions are over threshold, with the most activity • in the southern states

LINE CHART ILINE Percentage of visits for ILI, HHS Region : 2023-24 Season, week ending Dec 30, 20 PE CHART WHO/NREVSS STACKED COLUMN CHART WHO/NREVSS E = A H3 A (Unable to Subtype) A (H1Nt)partice A (H1Nt)partice B (Lineage Unspecified) B H3N2v B Notoria Lin

Virginia

43

United States Hospitalizations – Influenza Epidemic Growth

Influenza Forecasts – Hospitalization Admissions

Forecast from Dec 30th

Virginia New Flu Hospitalizations 2000 1500 1000 500 Sep 24 Oct 8 Oct 22 Nov 5 Nov 19 Dec 3 Dec 17 Dec 31 Jan 14 2023 2024

United States

Virginia

UVA forecast model only Hospital Admissions for Influenza and Forecast for next 4 weeks http://flux-forecasting.pods.uvarc.io

Current Influenza Hospitalization Forecast

Statistical models for submitting to CDC Influenza Forecasting Hub

 Uses a variety of statistical and ML approaches to forecast weekly hospital admissions for the next 4 weeks for all states in the US

Hospital Admissions for Influenza and Forecast for next 4 weeks (CDC Influenza Ensemble)

From January 3rd

CDC Flu Activity Surveillance

https://www.cdc.gov/flu/weekly/fluactivitysurv.htm

Current RSV Situation – Hospitalization Rates (RSV-Net)

Maryland (RSV-Net)

Data last updated: 01/03/2024 | Accessibility: Select (Enter) the graph area and press Alt + Shift + F11 to view the data as a table. Press ? to view more keyboard shortcuts.

Surveillance data as of:

12/16 (last solid data) 12/30 (last recent but likely to be updated)

1/12/2024

Current RSV Situation – Wastewater in VA

13-Dec-2023

BIOCOMPLEXITY INSTITUTE

49

Current RSV Situation – Vaccinations

Figure 1A. Cumulative Percentage of Adults 60 Years and Older Vaccinated with RSV Vaccine, 2023-2024^{*,†,‡,±} Data Source: National Immunization Survey–Adult COVID Module

Demographic Level: Overall Name:	s (60+)		
Jurisdiction	Vaccination & Intent	Estimate (%)	95% CI (%)
National	Vaccinated	17.0%	15.7 - 18.3
National	Definitely will get a vaccine	14.1%	12.1 - 16.2
National	Probably will get a vaccine or are unsure	38.7%	35.7 - 41.7
National	Definitely or probably will not get a vaccine	30.2%	27.1 - 33.3

- RSV Vaccination of 60+ nears 17% and exceeds National and Regional levels
- Another 14% still "definitely" intending to get vaccine
- Now 30% not planning on vaccinating

Combined Respiratory Disease

NSSP VA ED Visit Data as of 12-30-23

Virginia - COVID-19, Influenza, and RSV ED visits - Source: NSSP

R_t and Trend Estimates

COVID-19

measure	estimate
New confirmed cases by infection date	0 (0 - 1)
Expected change in daily cases	Likely increasing
Effective reproduction no.	1.1 (0.78 – 1.5)
Rate of growth	0.009 (-0.039 - 0.067)
Doubling/halving time (days)	77 (10 – -18)

Influenza

measure	estimate
New confirmed cases by infection date	1 (0 – 5)
Expected change in daily cases	Likely increasing
Effective reproduction no.	1.2 (0.83 – 1.8)
Rate of growth	0.037 (-0.046 – 0.15)
Doubling/halving time (days)	19 (4.5 – -15)

RSV

measure	estimate
New confirmed cases by infection date	0 (0 – 0)
Expected change in daily cases	Stable
Effective reproduction no.	1 (0.58 – 1.7)
Rate of growth	0.00022 (-0.067 – 0.071)
Doubling/halving time (days)	3100 (9.8 – -10)

National Modeling Hub

Scenario Modeling Hub – RSV (Round 1) in prep

Collaboration of multiple academic teams to provide national and state-by-state level projections for 6 aligned scenarios

- Round Designed to explore impacts of newly available treatments (monoclonal antibodies and vaccines)
- Based on data till November 12th, 2023

Scenario Dimensions:

No interventions vs. levels of treatments for infants vs. seniors:

Infants: Optimistic vs. Pessimistic - coverage (80% vs. 20%) and VE (80% vs, 60%)

Seniors: Optimistic vs. Pessimistic - coverage (40% vs. 20%) and VE (90% vs. 70%)

https://github.com/midas-network/rsv-scenario-modeling-hub

	Optimistic senior protection Vaccine is administered from Sep-June to seniors 60+ yrs - coverage saturates at 40% of the 2021-22 state- and age-specific flu vaccine coverage - VE against hospitalization is 90%	Pessimistic senior protection Vaccine is administered from Sep-June to seniors 60+ yrs - coverage saturates at 20% of the 2021-22 state-and age-specific flu vaccine coverage - VE against hospitalization is 70%	No senior intervention
Optimistic infant protection Long-acting monoclonals target infants < 6 months during RSV season (Oct-Mar) - coverage saturates at 60% of the 2021-22 state- and age-specific flu vaccine coverage - VE against hospitalization is 80%	Scenario A	Scenario B	
Pessimistic infant protection Long-acting monoclonals target infants < 6 months during RSV season (Oct-Mar) -coverage saturates at 20% of the 2021-22 state- and age-specific flu vaccine coverage - VE against hospitalization is 60%	Scenario C	Scenario D	
No infant intervention beyond what was used in prior years (limited supply of palivizumab, targeting ~2% of birth cohort at high risk)			Scenario E (counterfactual)

Scenario Modeling Hub – RSV (Round 1)

Preliminary Results based UVA-EpiHiper Model

- Hospitalizations of 0-1 year olds can be reduced 5-10% through high levels of treatments
- Hospitalization of 65+ year olds can be reduced 7-22%

Conservative assumptions

- Treatments and vaccinations don't interrupt transmission (unlikely, but no evidence yet to prove it)
- Vaccination coverage a fraction of seasonal influenza vaccines

US RSV Hospitalizations 65+ year olds

US RSV

Hospitalizations

0-1 year olds

Scenario Modeling Hub – Influenza (Round 4)

Collaboration of multiple academic teams to provide national and state-by-state level projections for 6 aligned scenarios

- Round Designed to explore a season dominated by H3 vs. H1 with different levels of seasonal flu vaccination coverage
- Based on data till September 2nd, 2023

Scenario Dimensions:

Influenza type A/H3 vs. A/H1:

- H3 higher hospitalization rates with vax efficacy weaker in older groups
- H1 lower hospitalization rates and efficacy even across age groups

Vaccination levels (compared to 2021-22 season):

Low (20% less) vs. Business as Usual (same) vs. Higher (20% more)

https://fluscenariomodelinghub.org/viz.html

	Season dominated by influenza A/H3N2, indexed on age distribution of 2017-18 season. VE = 40% against medically attended illnesses and hospitalizations, VE drops in older age groups	Season dominated by influenza A/H1N1, indexed on age distribution of 2019-20 season. VE = 40% against medically attended illnesses and hospitalizations, similar VE across all age groups
 Higher than Usual Vaccine Coverage Vaccine coverage is 20% higher than in the 2021-22 flu season in all age groups and jurisdictions. (20% is a relative change, ie a 50% coverage for age group <i>a</i> and jurisdiction <i>j</i> in 2021-22 translates to a 50%*1.20=60% coverage for 2023-24). Overall, the US coverage is about 60% in this scenario. 	Scenario A	Scenario B
 Business as Usual Vaccine Coverage Vaccine coverage is the same as in the 2021-22 flu season in all age groups and jurisdictions. Overall, the US coverage is about 50% in this scenario. 	Scenario C	Scenario D
 Low Vaccine Coverage Vaccine coverage is 20% lower than in the 2021-22 flu season in all age groups and jurisdictions. Overall, the US coverage is about 40% in this scenario. 	Scenario E	Scenario F

Scenario Modeling Hub – Influenza (Round 4)

- H1N1 season seems to have emerged
- Projections remain relatively on track

United States Hospitalizations

Projected Incident Hospitalization by Epidemiological Week and by Scenario for Round 1 - 2023/2024 - Start Projection Epiweek; -- Current Date) Scenario B: High vaccine coverage, A/H1N1 dominance Scenario D: Business as usual vaccine coverage, A/H1N1 dominant ak - Max: 34385 ak - Max: 34385 eak - 2022-2023 Season: 26333 Past Peak - 2022-2023 Season: 26333 Scenario F: Low vaccine coverage, A/H1N1 dominance k - Max: 3438 ak - 2022-2023 Season: 26333 Sep 2023 Nov 2023 Jan 2024 Mar 2024 May 2024 Epiweek

Incident Hospitalization — CDDEP-FluCompModel — MOBS_NEU-GLEAM_FLU — NIH-FluD — NIH-Flu_TS — NotreDame-FRED — PSI-M2

⁻⁻⁻⁻⁻⁻ USC-SIkJalpha ------ UT-ImmunoSEIRS ----- UVA-FluXSim ----- Ensemble_LOP_untrimmed

Scenario Modeling Hub – COVID-19 (Round 17)

Collaboration of multiple academic teams to provide national and state-by-state level projections for 6 aligned scenarios

- Preliminary Results
- Round Designed to explore different seasonal vaccination levels and the impact of Immune Escape

Scenario Dimensions:

Immune Escape (IE):

Slower IE (20%/yr) vs. Faster IE (50%/yr)

Vaccination levels:

None vs. Vulnerable and 65 + vs. Broader population of eligible https://covid19scenariomodelinghub.org/viz.html

	 Low immune escape Immune escape occurs at a constant rate of 20% per year 	High immune escape Immune escape occurs at a constant rate of 50% per year
 No vaccine recommendation Uptake negligible or continues at very slow levels based on existing 2022 booster trends 	Scenario A	Scenario B
 Reformulated annual vaccination recommended for 65+ and immunocompromised Reformulated vaccine has 65% VE against variants circulating on June 15 Vaccine becomes available September 1 Uptake in 65+ same as first booster dose recommended in September 2021 Uptake in individuals under 65 negligible or continues to trickle based on 2022 booster trends 	Scenario C	Scenario D
 Reformulated annual vaccination recommended for all currently eligible groups Reformulated vaccine has 65% VE against variants circulating on June 15 Vaccine becomes available September 1 65+ uptake same as first booster dose recommended in September 2021 Coverage in individuals under 65+ saturates at levels of the 2021 booster (approximately 34% nationally) 	Scenario E	Scenario F

SMH – COVID-19 (Round 17) – Virginia Results

- To date, immune escape evolution has been slow. Booster campaign size remains unknown.
- Significant variation in Fall-Winter 2023 outlook across models

USC-SIkJalpha ----- Ensemble_LOP

Incident Hospitalization JHU_IDD-CovidSP MOBS_NEU-GLEAM_COVID NotreDame-FRED UNCC-hierbin USC-SikJalpha UVA-adaptive
 UTA-ImmunoSEIRS UVA-EpiHiper Ensemble_LOP

Slower Immune Escape (20%)

Faster Immune Escape (50%)

Key Takeaways

Most COVID-19 indicators show signs of slowing growth

- Case and Hospitalization remain elevated but may be leveling off
- Other indicators also indicate high levels that may be leveling off as well
- Wastewater indicators are high but have show signs of stabilization
- This suggest we may be nearing the Peak of COVID-19 activity.

Influenza remains very high and growing, though the rate of growth may be slowing

RSV activity has leveled off and may be slowing

Questions?

Points of Contact

Bryan Lewis brylew@virginia.edu

Srini Venkatramanan srini@virginia.edu

Madhav Marathe marathe@virginia.edu

Chris Barrett ChrisBarrett@virginia.edu

Biocomplexity COVID-19 Response Team

Aniruddha Adiga, Abhijin Adiga, Hannah Baek, Chris Barrett, Golda Barrow, Richard Beckman, Parantapa Bhattacharya, Jiangzhuo Chen, Clark Cucinell, Patrick Corbett, Allan Dickerman, Stephen Eubank, Stefan Hoops, Ben Hurt, Ron Kenyon, Brian Klahn, Bryan Lewis, Dustin Machi, Chunhong Mao, Achla Marathe, Madhav Marathe, Henning Mortveit, Mark Orr, Joseph Outten, Akhil Peddireddy, Przemyslaw Porebski, Erin Raymond, Jose Bayoan Santiago Calderon, James Schlitt, Samarth Swarup, Alex Telionis, Srinivasan Venkatramanan, Anil Vullikanti, James Walke, Andrew Warren, Amanda Wilson, Dawen Xie

