Evaluation of Volatile Organic Compounds in Outdoor Air at Woodson Middle School (2017–2019)

Woodson Middle School

HOPEWELL, VIRGINIA

Letter Health Consultation

March 27, 2023

Virginia Department of Health Public Health Toxicology 109 Governor Street Richmond, Virginia 23219

COMMONWEALTH of VIRGINIA

R. Christopher Lindsay Chief Operating Officer Department of Health P O BOX 2448 RICHMOND, VA 23218

TTY 7-1-1 OR 1-800-828-1120

March 27, 2023

Charles Turner Air Monitoring Manager Virginia Department of Environmental Quality 4949-c Cox Road Glen Allen, VA 23060

Dear Charles Turner,

Thank you for the opportunity to review the air monitoring results collected 2017–2019 at Woodson Middle School in Hopewell, VA. As requested, the Virginia Department of Health (VDH) has finished reviewing the volatile organic compounds (VOCs) monitoring results for public health implications. Sampling methodology used and site descriptions have been described in previous risk assessments prepared for you and will not be discussed here.

DISCUSSION

Results

The following section contains results and comparison values (CVs) for VOCs monitored in 2017–2019 at Woodson. CVs are discussed in more detail in the public health implications section. For a complete list of all VOCs monitored each year, their frequency of detection, maximum and average concentrations, refer to tables at the end of this letter.

VDH compared the yearly maximum concentration of each VOC with their CV. Out of approximately 60 VOCs analyzed, five VOCS yearly average concentration exceeded their chronic CVs. The maximum and yearly average concentrations of the five VOCs and their CVs are shown in Table 1.

	201	17	2018		2019			
Analyte	Max	Avg	Max	Avg	Max	Avg	CV	CV Type
Acrolein-								RMEG
unverified	2.12E+00	5.45E-01	1.55E+00	3.62E-01	7.12E+00	5.31E-01	8.70E-03	(chronic)
Benzene	6.40E-01	1.58E-01	2.90E-01	1.09E-01	6.30E-01	1.46E-01	4.00E-02	CREG
Carbon								
tetrachloride	1.20E-01	7.00E-02	1.30E-01	6.90E-02	1.40E-01	6.28E-02	2.60E-02	CREG
Chloroform	6.00E-02	2.36E-02	5.00E-02	2.21E-02	1.10E-01	2.41E-02	8.90E-03	CREG
1,2-Dibromo-								
ethane	5.00E-02	2.46E-03	5.00E-02	3.93E-03	8.00E-02	6.07E-03	2.20E-04	CREG

Table 1. Volatile organic compounds with yearly average concentrations that exceeded chronic comparison value (2017–2019).

(*Source:* DEQ) All units parts per billion (ppb). **Max** – maximum; **Avg** – average; **CV** – comparison value; **CREG** – cancer risk evaluation guide; **RMEG** – reference media evaluation guide; **bold** – values that exceed the CV; **MDL** – less than minimum detectable level.

Of the five reported here, only acrolein, benzene, carbon tetrachloride, and chloroform have yearly average air concentrations that have exceeded their CVs multiple times during 2009–2016 monitoring period.

Public Health Implications

Contaminants in the environment can only impact human health if individuals are (1) exposed to contaminants and (2) if contaminants are present at sufficient concentrations. Residents can potentially be exposed to contaminants in ambient air whenever they spend time outdoors. Evaluation of the VOCs with air concentrations above their respective CV are discussed below.

Contaminant evaluation

VDH uses CVs to evaluate air contaminant concentrations. CVs are media-specific concentrations used to identify contaminants that often require additional evaluation. They are derived using standard default exposure assumptions and are not site-specific. For contaminants detected below their respective CVs, exposure is not anticipated to result in adverse health effects. Concentrations above CVs do not mean that adverse health effects occurred or will occur, but that further investigation is needed. Therefore, the CVs should not be used to predict the occurrence of adverse health effects.

CVs used to evaluate contaminants at the sampling sites:

- Reference media evaluation guides (RMEGs) are Agency for Toxic Substances and Disease (ATSDR)-derived CVs based on non-cancer health effects for chronic exposure duration only. RMEGs represent the concentration in a specific medium (e.g., water or soil) at which daily human exposure is unlikely to result in adverse non-carcinogenic effects. For air, RMEGs are the same as corresponding U.S Environmental Protection Agency's (EPA's) inhalation reference concentrations (RfCs).
- Cancer risk evaluation guides (CREGs) are ATSDR-specific CVs that are used to identify concentrations of cancer-causing substances that are unlikely to result in a significant increase of cancer rates in an exposed population. ATSDR develops CREGs using EPA's cancer slope factor or inhalation unit risk, a target risk level (10⁻⁶), and default exposure assumptions. The

target risk level of 10^{-6} represents an estimated risk of 1 excess cancer case in an exposed population of 1 million.

The five VOCs with average concentrations that exceeded their CVs were evaluated further. The most recent (2016) ambient air concentrations of each VOC are similar to what has been reported elsewhere (Table 2). The potential for these VOCs to cause adverse health effects depends on the length of exposure, the concentration of the VOC, and sensitivity of the individual. Table 2 summarizes ambient air concentrations reported in the literature, sources of each VOC, and their potential health effects.

Volatile Organic	Reported Air	Source	Health Effect (s)
Compound	Concentrations		
Acrolein	0.2 ppb in urban air;	automobile tobacco	humans: watery eyes, nose and throat irritation
	0.12 ppb in rural air	coal or oil	Irritation
	Tymical indeen ain 0.02		not alegaifighte as to compine conjuity
	Typical indoor air 0.02 to 12 ppb	power plants	not classifiable as to carcinogenicity in humans
	to 12 ppo	industrial	III IIuiiiaiis
1,2	2.6 parts per trillion in	Emissions into	humans: long-term exposure have
Dibromethane	urban and suburban	air from	been reported to have reproductive
Dioionictiane	areas	industrial	effects in workers. Vomiting and
	areas	processing	diarrhea has also been reported by
	1.9 ppt near source-	facilities	exposed workers
	dominated areas	identities	exposed workers
	dominated areas		shown to cause weight loss, and
			damage to stomach, liver, kidneys,
			and sperm in laboratory animals
Benzene	between 0.1 to 1.5 ppb	industrial	humans: affects multiple organs
	in urban locations		including nervous system, kidneys,
			liver, and lungs
			may reasonably be expected to cause
			cancer
Carbon	0.01 to 0.05 ppb	industrial	humans: can affect the nervous
tetrachloride			system, and may affect the liver,
		landfills	kidney, digestion tract and the body's
			ability to fight infection.
			shown to cause cancer in laboratory
			animals
Chloroform	rural and urban air	industrial	humans: no information on human
	average 0.002-0.003		health effects
	ppb		
			animals: irritation of the nose, kidney
			and liver damage
			not classifiable as to its
			carcinogenicity in humans
L	l	L	earennogenneneg in nunnuns

(Source: Agency for Toxic Substances and Disease Registry. Accessed online January 2023 http://www.atsdr.cdc.gov/)

Cancer risk

The yearly average concentrations of the carcinogens, benzene, carbon tetrachloride, chloroform, and 1,2 dibromoethane exceeded their CVs multiple times during the 2016-2019 monitoring period. VDH used the yearly average concentration for each of these compounds to calculate the cancer risk (see Box 1). This approach may overestimate the cancer risk because it assumes that a community member is exposed to the highest concentration of each carcinogen over their entire lifespan. The additional calculated cancer risk for each VOC is within EPA's generally acceptable risk range (1 in 10,000 to 1 in 1,000,000) and is therefore considered low. VDH also calculated the total excess cancer risk by adding the estimated cancer risk for each individual contaminant. The total excess cancer risk (less than 2 in 100,000) is still considered to be low, especially considering that the background cancer rate in the United States is about one in three.

Box 1. Cancer risk calculation for carcinogens discussed

To estimate cancer risk from inhaling carcinogens discussed, the inhalation unit risk (IUR) factor in $(\mu g/m^3)^{-1}$ for each carcinogen is multiplied by the air concentration of the contaminant in $\mu g/m^3$.* See Equation 1 below.

Equation 1

Cancer Risk = IUR × Concentration

Benzene (2017–2019 average concentration 0.44 µg/m³)

 $3.4 \times 10^{-6} = 7.8 \times 10^{-6} (\mu g/m^3)^{-1} \times 0.44 \ \mu g/m^3 =$ less than 4 additional cancers in 1 million

Carbon tetrachloride (2017–2019 average concentration 0.42 µg/m³)

 $2.5 \times 10^{-6} = 6 \times 10^{-6} (\mu g/m^3)^{-1} \times 0.42 \ \mu g/m^3 = \text{less than 3 additional cancers in 1 million}$

Chloroform (2017–2019 average concentration 0.11 µg/m³)

 $2.5 \times 10^{-6} = 2.3 \times 10^{-5} (\mu g/m^3)^{-1} \times 0.11 \ \mu g/m^3 = \text{less than 3 additional cancers in 1 million}$

1,2 Dibromoethane (2017–2019 average concentration 0.03 µg/m³)

 $9 \times 10^{-6} = 3 \times 10^{-4} (\mu g/m^3)^{-1} \times 0.03 \ \mu g/m^3 = \text{less than } 10 \text{ additional cancers in } 1 \text{ million}$

*Concentration (μ g/m³) = (Concentration (ppb) x molecular weight)/24.45

Non-cancer risk discussion

Acrolein maximum and yearly average concentrations exceeded its chronic non-cancer CV. Acrolein yearly maximum and average air concentrations also exceeded its non-cancer CV during 2009–2016. Concentrations for acrolein are noted as unverified, so the actual concentration of acrolein may differ. The method used may not accurately measure concentrations of acrolein, so to verify this a new method will be used in 2023.¹

Acrolein is a liquid with a burnt, sweet, pungent odor that can be detected by most individuals in air at 0.25 parts per million (ppm). It is primarily used to make other compounds and as a pesticide. It can enter the environment if not stored properly and as the result of burning wood, tobacco, vehicle fuels.

Acrolein's effects on your health depends on the amount and length of time of exposure. Acrolein is very irritating to the eyes, nose, throat, lungs, stomach, and skin. As you are exposed to more acrolein, and for a longer period of time, the effects that you experience are likely to become worse. If you breathed in low levels of acrolein for a short time, your eyes might water, and your nose and throat might become sore. These effects disappear within minutes after the exposure stops. However, if you were exposed to higher levels, your lungs might be affected more severely and for a longer time.

In general, children are not likely to be affected by acrolein more than adults. However, children who are sensitive to irritants in the air (such as children with asthma) may be more sensitive to lung irritation from acrolein. In animal studies, ingestion of very large amounts of acrolein during pregnancy caused reduced birth weights and skeletal deformities in newborns. However, the levels causing these effects were often fatal to the mother. These effects were not seen at levels that were also not toxic to the mother.

The health risk from eating food or drinking water containing acrolein is not known. The Department of Health and Human Services (DHHS) has not classified acrolein as to its carcinogenicity. The International Agency for Research on Cancer (IARC) has determined that acrolein is not classifiable as to carcinogenicity in humans. The EPA has stated that the potential carcinogenicity of acrolein cannot be determined based on an inadequate database.

The reported average concentrations of acrolein were evaluated using the ATSDR Public Health Assessment Site Tool for chronic, intermediate, and acute duration exposure in a school scenario. Risks to middle-school students, schoolteachers, and school workers were evaluated using both central tendency exposure (CTE) and reasonable maximum exposure (RME). The CTE is for average or typical exposure, whereas the RME refers to individuals who are at the high end of the exposure distribution (approximately the 95th percentile). The model generated a hazard quotient (HQ) greater than one for all receptors using the CTE or the RME in the chronic and intermediate duration exposure scenarios (see Tables 6 and 7). The concentrations reported are stated to be provisional values, so the actual acrolein concentration may differ, and will be determined in future sampling.

¹ Personal Communication, Virginia Department of Environmental Quality, February 2023.

CONCLUSIONS

Benzene, carbon tetrachloride, chloroform, and 1,2-dibromoethane air concentrations are not a health hazard because their calculated cancer risk is low.

If measured concentrations of "acrolein-unverified" are the actual concentration of acrolein at Woodson Middle School then this is a health hazard to students, teachers, and workers, because the calculated hazard quotient is greater than one.

RECOMMENDATION

Monitor acrolein in air at Woodson Middle School using validated methods when they become available.

Authors

Dwight Flammia, Ph.D. State Public Health Toxicologist Virginia Department of Health 109 Governor Street Richmond, VA 23219

Amy Hayes, Ph.D. Health Assessor Virginia Department of Health 109 Governor Street Richmond, VA 23219

	Samples					
Analyte	Run	Detections	Max	Avg	CV	CV Type
Acetonitrile	61	58	1.03E+01	2.18E+00	3.60E+01	RMEG (chronic)
Acetomume	01		1.031701	2.16E+00	3.00E+01	RMEG
Acrolein	61	51	2.12E+00	5.45E-01	8.70E-03	(chronic)
Acrylonitrile	61	0	0.00E+00	0.00E+00	6.80E-03	CREG
Benzene	61	60	6.40E-01	1.58E-01	4.00E-02	CREG
Bromodichloromethane	61	0	0.00E+00	0.00E+00	1.13E-02	RSL (cancer)
Bromoform	61	0	2.00E-02	3.28E-04	8.80E-02	CREG
			0.001	0.007.00	1.005.00	EMEG
Bromomethane	61	0	0.00E+00	0.00E+00	1.00E+00	(chronic)
1,3-Butadiene	61	0	0.00E+00	0.00E+00	1.50E-02	CREG
Carbon tetrachloride	61	60	1.20E-01	7.00E-02	2.60E-02	CREG RSL
Chlorobenzene	61	4	1.00E-01	4.10E-03	1.13E+02	(noncancer)
	01		1.002 01	IIIOE 05	1.152.02	RMEG
Chloroethane	61	1	3.40E-01	5.57E-03	3.80E+03	(chronic)
Chloroform	61	33	6.00E-02	2.36E-02	8.90E-03	CREG
Chloromethane	61	61	0.800.01	6.24E-01	2 00E±01	EMEG (abrania)
Chloromethane	01	61	9.80E-01	0.24E-01	3.00E+01	(chronic) RMEG
Cyclohexane	61	1	6.00E-02	9.84E-04	1.70E+03	(chronic)
Dibromochloromethane	61	0	0.00E+00	0.00E+00	N/A	N/A
1,2-Dibromoethane	61	1	5.00E-02	2.46E-03	2.20E-04	CREG
						RSL
1,2-Dichlorobenzene	61	9	1.40E-01	1.51E-02	3.50E+01	(noncancer)
1,3-Dichlorobenzene	61	8	1.90E-01	1.56E-02	N/A	N/A
1,4-Dichlorobenzene	61	8	2.40E-01	2.13E-02	1.00E+01	EMEG (chronic)
	01	0	2.102 01	2.132 02	1.002.01	RSL
Dichlorodifluoromethane	61	61	6.50E-01	5.30E-01	2.02E+01	(noncancer)
1,1-Dichloroethane	61	0	0.00E+00	0.00E+00	3.21E-01	RSL (cancer)
cis-1,2-Dichloroethene	61	0	0.00E+00	0.00E+00	2.00E+05	PEL
	(1	0			2.005.02	EMEG
trans-1,2-Dichloroethene	61	0	0.00E+00	0.00E+00	2.00E+02	(intermediate) EMEG
1,1-Dichloroethylene	61	0	0.00E+00	0.00E+00	1.00E+00	(chronic)
Dichloromethane	61	60	2.30E-01	9.36E-02	1.80E+01	CREG
						RMEG
1,2-Dichloropropane	61	0	0.00E+00	0.00E+00	8.70E-01	(chronic)
cis-1,3-Dichloropropene	61	0	0.00E+00	0.00E+00	5.50E-02	CREG
trans-1,3-Dichloropropene	61	0	0.00E+00	0.00E+00	5.50E-02	CREG
Ethyl Acetate	61	Λ	9.00E-02	4.59E-03	2.00E+01	RSL (noncancer)
Buryi Acetate	01	4	9.00E-02	4.37E-03	2.00E+01	EMEG
Ethylbenzene	61	28	1.30E-01	2.93E-02	6.00E+01	(chronic)

Attachments Table 3. Volatile organic compounds air monitoring results and comparison values – 2017

Analyte	Samples Run	Detections	Max	Avg	CV	СV Туре
•	(1	0				EMEG
Ethylene dichloride	61	0	0.00E+00	0.00E+00	1.00E+00	(chronic)
p-Ethyltoluene	61	14	2.10E-01	1.43E-02	N/A	N/A
Freon 113	61	61	2.50E-01	8.52E-02	1.00E+06	PEL
Freon 114	61	0	0.00E+00	0.00E+00	1.00E+06	PEL
n-Heptane	61	26	2.80E-01	4.46E-02	1.03E+02	RSL (noncancer)
Hexachloro-1,3-butadiene	61	0	1.00E-02	1.64E-04	4.30E-03	CREG
n-Hexane	61	42	4.30E-01	9.64E-02	2.00E+02	RMEG (chronic)
Methyl chloroform	61	0	0.00E+00	0.00E+00	3.80E+03	RMEG (chronic)
Methyl methacrylate	61	0	0.00E+00	0.00E+00	1.70E+02	RMEG (chronic)
MTBE	61	0	0.00E+00	0.00E+00	8.30E+02	RMEG (chronic)
Propylene	61	1	4.60E-01	7.54E-03	1.80E+03	RSL (noncancer)
Styrene	61	61	2.80E-01	4.64E-02	2.00E+02	EMEG (chronic)
1,1,2,2-Tetrachloroethane	61	0	1.00E-02	8.20E-04	5.86E-02	RSL (cancer)
Tetrachloroethylene	61	10	2.80E-01	1.39E-02	5.70E-01	CREG
Tetrahydrofuran	61	3	6.00E-02	2.79E-03	6.80E+02	RMEG (chronic)
Toluene	61	61	9.90E-01	2.30E-01	1.00E+03	EMEG (chronic)
1,2,4-Trichlorobenzene	61	5	3.30E-01	2.18E-02	2.83E-01	RSL (noncancer)
1,1,2-Trichloroethane	61	0	2.00E-02	9.84E-04	1.00E-02	CREG
Trichloroethylene	61	0	3.00E-02	1.48E-03	4.00E-02	CREG
Trichlorofluoromethane	61	61	3.20E-01	2.53E-01	9.97E+05	PEL
1,2,4-Trimethylbenzene	61	39	2.80E-01	5.79E-02	1.20E+01	RMEG (chronic)
1,3,5-Trimethylbenzene	61	19	1.90E-01	1.34E-02	1.20E+01	RMEG (chronic)
Vinyl chloride	61	0	0.00E+00	0.00E+00	4.40E-02	CREG
m,p-Xylenes	61	37	4.50E-01	9.00E-02	2.30E+01	RMEG (chronic)
o-Xylene	61	31	1.50E-01	3.49E-02	2.30E+01	RMEG (chronic)

(*Source:* DEQ) All units are in parts per billion (ppb). **REL**-Recommended Exposure Limit, **RSL**-Regional Screening Level, **N/A**-Not Available, **PEL**-Permissible Exposure Limit, **EMEG**-Environmental Media Exposure Guideline, **CREG**-Cancer Risk Exposure Guideline, **Int.**-Intermediate, **RfC**-Reference Concentration, **Num**-number of samples collected, **Max**- maximum concentration, **Avg**- average concentration, **CV**-comparison value

Analyte	Samples Run	Detections	Max	Avg	CV	СV Туре
Acetonitrile	61	36	3.81E+00	3.31E-01	3.60E+01	RMEG (chronic)
						RMEG
Acrolein	61	40	1.55E+00	3.62E-01	8.70E-03	(chronic)
Acrylonitrile	61	0	0.00E+00	0.00E+00	6.80E-03	CREG
Benzene	61	57	2.90E-01	1.09E-01	4.00E-02	CREG
Bromodichloromethane	61	0	0.00E+00	0.00E+00	1.13E-02	RSL (cancer)
Bromoform	61	0	2.00E-02	4.92E-04	8.80E-02	CREG
Bromomethane	61	0	0.00E+00	0.00E+00	1.00E+00	EMEG (chronic)
1,3-Butadiene	61	0	0.00E+00	0.00E+00	1.50E-02	CREG
Carbon tetrachloride	61	57	1.30E-01	6.90E-02	2.60E-02	CREG
Chlorobenzene	61	4	8.00E-02	7.70E-03	1.13E+02	RSL (noncancer)
Chloroethane	61	0	0.00E+00	0.00E+00	3.80E+03	RMEG (chronic)
Chloroform	61	32	5.00E-02	2.21E-02	8.90E-03	CREG
Chloromethane	61	57	7.40E-01	5.57E-01	3.00E+01	EMEG (chronic)
						RMEG
Cyclohexane	61	2	3.00E-02	1.48E-03	1.70E+03	(chronic)
Dibromochloromethane	61	0	2.00E-02	3.28E-04	N/A	N/A
1,2-Dibromoethane	61	0	5.00E-02	3.93E-03	2.20E-04	CREG RSL
1,2-Dichlorobenzene	61	3	1.20E-01	1.71E-02	3.50E+01	(noncancer)
1,3-Dichlorobenzene	61	20	1.90E-01	2.39E-02	N/A	N/A
1,4-Dichlorobenzene	61	3	3.20E-01	3.26E-02	1.00E+01	EMEG (chronic)
Dichlorodifluoromethane	61	57	6.50E-01	5.09E-01	2.02E+01	RSL (noncancer)
1,1-Dichloroethane	61	1	2.00E-02	3.28E-04	3.21E-01	RSL (cancer)
cis-1,2-Dichloroethene	61	0	0.00E+00	0.00E+00	2.00E+05	PEL
trans-1,2-Dichloroethene	61	42	0.00E+00	0.00E+00	2.00E+02	EMEG (intermediate)
1,1-Dichloroethylene	61	1	2.00E-02	3.28E-04	1.00E+00	EMEG (chronic)
Dichloromethane	61	22	4.30E-01	1.07E-01	1.80E+01	CREG
1,2-Dichloropropane	61	0	0.00E+00	0.00E+00	8.70E-01	RMEG (chronic)
cis-1,3-Dichloropropene	61	0	0.00E+00	0.00E+00	5.50E-02	CREG
trans-1,3-Dichloropropene	61	0	0.00E+00	0.00E+00	5.50E-02	CREG
Ethyl acetate	61	7	9.00E-02	6.72E-03	2.00E+01	RSL (noncancer)
Ethylbenzene	61	8	6.00E-02	1.61E-02	6.00E+01	EMEG (chronic)
Ethylene dichloride	61	0	0.00E+00	0.00E+00	1.00E+00	EMEG (chronic)

Table 4. Volatile organic compounds air monitoring results and comparison values – 2018

Analyte	Samples Run	Detections	Max	Avg	CV	СV Туре
p-Ethyltoluene	61	1	2.00E-01	7.21E-03	N/A	N/A
Freon 113	61	57	1.90E-01	8.23E-02	1.00E+06	PEL
Freon 114	61	0	0.00E+00	0.00E+00	1.00E+06	PEL
n-Heptane	61	22	8.70E-01	5.21E-02	1.03E+02	RSL (noncancer)
Hexachloro-1,3-butadiene	61	0	3.00E-02	9.84E-04	4.30E-03	CREG
n-Hexane	61	44	4.10E-01	8.15E-02	2.00E+02	RMEG (chronic)
Methyl chloroform	61	0	0.00E+00	0.00E+00	3.80E+03	RMEG (chronic) RMEG
Methyl methacrylate	61	0	0.00E+00	0.00E+00	1.70E+02	(chronic) RMEG
MTBE	61	0	0.00E+00	0.00E+00	8.30E+02	(chronic) RSL
Propylene	61	6	4.80E-01	3.41E-02	1.80E+03	(noncancer) EMEG
Styrene	61	17	2.50E-01	2.87E-02	2.00E+02	(chronic)
1,1,2,2-Tetrachloroethane	61	0	2.00E-02	1.80E-03	5.86E-02	RSL (cancer)
Tetrachloroethylene	61	12	5.00E-02	1.31E-02	5.70E-01	CREG
Tetrahydrofuran	61	2	5.00E-02	1.64E-03	6.80E+02	RMEG (chronic)
Toluene	61	57	1.36E+00	1.54E-01	1.00E+03	EMEG (chronic)
1,2,4-Trichlorobenzene	61	2	4.70E-01	3.57E-02	2.83E-01	RSL (noncancer)
1,1,2-Trichloroethane	61	0	3.00E-02	9.84E-04	1.00E-02	CREG
Trichloroethylene	61	0	3.00E-02	1.48E-03	4.00E-02	CREG
Trichlorofluoromethane	61	56	2.90E-01	2.32E-01	9.97E+05	PEL
1,2,4-Trimethylbenzene	61	12	2.20E-01	3.51E-02	1.20E+01	RMEG (chronic)
1,3,5-Trimethylbenzene	61	1	5.00E-02	4.43E-03	1.20E+01	RMEG (chronic)
Vinyl chloride	61	0	0.00E+00	0.00E+00	4.40E-02	CREG
m,p-Xylenes	61	19	1.50E-01	4.67E-02	2.30E+01	RMEG (chronic)
o-Xylene	61	12	6.00E-02	1.95E-02	2.30E+01	RMEG (chronic)

(*Source:* DEQ) All units are in parts per billion (ppb). **REL**-Recommended Exposure Limit, **RSL**-Regional Screening Level, N/A-Not Available, **PEL**-Permissible Exposure Limit, **EMEG**-Environmental Media Exposure Guideline, **CREG**-Cancer Risk Exposure Guideline, **Int.**-Intermediate, **RfC**-Reference Concentration, **Num**-number of samples collected, **Max**- maximum concentration, **Avg**- average concentration, **CV**-comparison value

Table 5. Volatile of gain			ing result	s and com		
Analyte	Samples Run	Detections	Max	Avg	CV	СV Туре
1,1,2,2-Tetrachloroethane	61	1	8.00E-02	3.28E-03	5.86E-02	RSL (cancer)
1,1,2-Trichloroethane	61	1	9.00E-02	3.61E-03	1.00E-02	CREG
1,1-Dichloroethane	61	1	9.00E-02	1.48E-03	3.21E-01	RSL (cancer)
1,1-Dichloroethylene	61	1	1.00E-01	1.64E-03	1.00E+00	EMEG (chronic)
1,2,4-Trichlorobenzene	61	11	1.03E+00	1.02E-01	2.83E-01	RSL (noncancer) RMEG
1,2,4-Trimethylbenzene	61	37	2.40E-01	8.21E-02	1.20E+01	(chronic)
1,2-Dibromoethane	61	2	8.00E-02	6.07E-03	2.20E-04	CREG
1,2-Dichlorobenzene	61	10	3.00E-01	3.43E-02	3.50E+01	RSL (noncancer)
1,2-Dichloropropane	61	1	1.30E-01	2.13E-03	8.70E-01	RMEG (chronic)
1,3,5-Trimethylbenzene	61	8	5.00E-02	9.51E-03	1.20E+01	RMEG (chronic)
1,3-Butadiene	61	1	1.20E-01	1.97E-03	1.50E-02	CREG
1,3-Dichlorobenzene	61	20	4.10E-01	5.07E-02	N/A	N/A
1,4-Dichlorobenzene	61	9	5.10E-01	5.30E-02	1.00E+01	EMEG (chronic)
Acetonitrile	61	20	2.95E+02	5.49E+00	3.60E+01	RMEG (chronic)
Acrolein	61	40	7.12E+00	5.31E-01	8.70E-03	RMEG (chronic)
Acrylonitrile	61	1	9.00E-02	1.48E-03	6.80E-03	CREG
Benzene	61	59	6.30E-01	1.46E-01	4.00E-02	CREG
Bromodichloromethane	61	1	1.00E-01	1.64E-03	1.13E-02	RSL (cancer)
Bromoform	61	0	5.00E-02	1.64E-03	8.80E-02	CREG
Bromomethane	61	1	1.20E-01	1.97E-03	1.00E+00	EMEG (chronic)
Carbon tetrachloride	61	56	1.40E-01	6.28E-02	2.60E-02	CREG
Chlorobenzene	61	8	1.30E-01	1.18E-02	1.13E+02	RSL (noncancer)
Chloroethane	61	1	1.30E-01	2.13E-03	3.80E+03	RMEG (chronic)
Chloroform	61	24	1.10E-01	2.41E-02	8.90E-03	CREG
Chloromethane	61	59	7.60E-01	5.55E-01	3.00E+01	EMEG (chronic)
cis-1,2-Dichloroethene	61	1	8.00E-02	1.31E-03	2.00E+05	PEL
cis-1,3-Dichloropropene	61	1	8.00E-02	1.31E-03	5.50E-02	CREG
Cyclohexane	61	2	1.00E-01	2.13E-03	1.70E+03	RMEG (chronic)
Dibromochloromethane	61	1	7.00E-02	2.30E-03	N/A	N/A
Dichlorodifluoromethane	61	59	5.70E-01	4.65E-01	2.02E+01	RSL (noncancer)
trans-1,2-Dichloroethene	61	31	9.00E-02	1.48E-03	2.00E+02	EMEG (intermediate)

Table 5. Volatile organic compounds air monitoring results and comparison values – 2019

Analyte	Samples Run	Detections	Max	Avg	CV	СV Туре
Dichloromethane	61	37	3.50E-01	1.02E-01	1.80E+01	CREG
trans-1,3-Dichloropropene	61	1	7.00E-02	1.15E-03	5.50E-02	CREG
						RSL
Ethyl Acetate	61	8	2.80E-01	1.54E-02	2.00E+01	(noncancer)
Ethylbenzene	61	20	1.10E-01	2.69E-02	6.00E+01	EMEG (chronic)
Ethylene dichloride	61	1	1.00E-01	1.64E-03	1.00E+00	EMEG (chronic)
Freon 113	61	59	1.60E-01	7.93E-02	1.00E+06	PEL
Freon 114	61	1	1.20E-01	1.97E-03	1.00E+06	PEL
Hexachloro-1,3-Butadiene	61	2	8.00E-02	2.46E-03	4.30E-03	CREG
Tiexaemoro 1,5 Duadene	01		0.001 02	2.101 05	1.501 05	CILLO
Methyl chloroform	61	1	9.00E-02	1.48E-03	3.80E+03	RMEG (chronic)
	(1		0.005.00	1 215 02	1 705 102	RMEG
Methyl methacrylate	61	1	8.00E-02	1.31E-03	1.70E+02	(chronic) RMEG
MTBE	61	1	9.00E-02	1.48E-03	8.30E+02	(chronic)
n-Heptane	61	34	5.60E-01	6.23E-02	1.03E+02	RSL (noncancer)
n-Hexane	61	43	4.60E-01	9.18E-02	2.00E+02	RMEG (chronic)
p-Ethyltoluene	61	13	2.20E-01	2.30E-02	N/A	N/A
Propylene	61	4	5.20E-01	2.39E-02	1.80E+03	RSL (noncancer)
Styrene	61	36	5.40E-01	6.10E-02	2.00E+02	EMEG (chronic)
Tetrachloroethylene	61	7	1.10E-01	8.85E-03	5.70E-01	CREG
Tetrahydrofuran	61	6	2.20E-01	8.36E-03	6.80E+02	RMEG (chronic)
Toluene	61	59	9.70E-01	1.78E-01	1.00E+03	EMEG (chronic)
Trichloroethylene	61	1	1.10E-01	3.44E-03	4.00E-02	CREG
Trichlorofluoromethane	61	58	3.20E-01	2.32E-01	9.97E+05	PEL
Vinyl chloride	61	1	1.00E-01	1.64E-03	4.40E-02	CREG
m,p-Xylenes	61	33	3.60E-01	7.48E-02	2.30E+01	RMEG (chronic)
o-Xylene	61	26	1.50E-01	3.23E-02	2.30E+01	RMEG (chronic)

(*Source:* DEQ) All units are in parts per billion (ppb). **REL**-Recommended Exposure Limit, **RSL**-Regional Screening Level, **N/A**-Not Available, **PEL**-Permissible Exposure Limit, **EMEG**-Environmental Media Exposure Guideline, **CREG**-Cancer Risk Exposure Guideline, **Int.**-Intermediate, **RfC**-Reference Concentration, **Num**-number of samples collected, **Max**- maximum concentration, **Avg**- average concentration, **CV**-comparison value

Table 6. School: Site-specific exposure point concentrations for chronic exposure to acrolein in air at average detection values (0.48 ppb) along with non-cancer hazard quotients*

PHAST PUBLIC HEALTH ASSESSMENT SITE TOOL Exposure Group	CTE Adjusted EPC (µg/m ³)	CTE Adjusted EPC (ppb)	CTE Non- cancer Hazard Quotient	CTE Cancer Risk	CTE Exposure Duration (yrs)	RME Adjusted EPC (µg/m ³)	RME Adjusted EPC (ppb)	RME Non- cancer Hazard Quotient	RME Cancer Risk	RME Exposure Duration (yrs)
Middle School 6th – 8th grades	0.16	0.071	8.2 [†]	-	3	0.27	0.12	14 [†]	-	3
Full time educator	0.21	0.091	10 †	-	5	0.27	0.12	14 †	-	20
Full time worker	0.27	0.12	13 †	-	5	0.27	0.12	13 †	-	20

Source: DEQ

Abbreviations: adjusted EPC = the exposure point concentration (EPC) times the appropriate exposure factors; $\mu g/m^3$ = micrograms per meter cubed; ppb = parts per billion; mg/kg/day = milligram chemical per kilogram body weight per day; yrs = years

* The calculations in this table were generated using ATSDR's PHAST v2.2.1.0. The non-cancer hazard quotients were calculated using the chronic (greater than 1 year) reference concentration of 0.02 μg/m³.

⁺ A shaded cell indicates the hazard quotient is greater than 1, which ATSDR evaluates further.

Table 7. School: Site-specific exposure point concentrations for intermediate exposure to acrolein in air at average detection
values (0.48 ppb) along with non-cancer hazard quotients*

PUBLIC HEALTH ASSESSMENT SITE TOOL Exposure Group	CTE Adjusted EPC (µg/m ³)	CTE Adjusted EPC (ppb)	CTE Non-cancer Hazard Quotient	RME Adjusted EPC (µg/m ³)	RME Adjusted EPC (ppb)	RME Non-cancer Hazard Quotient
Middle School 6th – 8th grades	0.22	0.096	2.4 [†]	0.30	0.13	3.3 [†]
Full time educator	0.28	0.12	3.0 [†]	0.30	0.13	3.3 [†]
Full time worker	0.28	0.12	3.0 [†]	0.28	0.12	3.0 [†]

Source: DEQ

Abbreviations: adjusted EPC = the exposure point concentration (EPC) times the appropriate exposure factors; $\mu g/m^3$ = micrograms per meter cubed; ppb = parts per billion; mg/kg/day = milligram chemical per kilogram body weight per day

* The calculations in this table were generated using ATSDR's PHAST v2.2.1.0. The non-cancer hazard quotients were calculated using the intermediate (two weeks to less than 1 year) minimal risk level of 0.092 μg/m³.

⁺ A shaded cell indicates the hazard quotient is greater than 1, which ATSDR evaluates further.