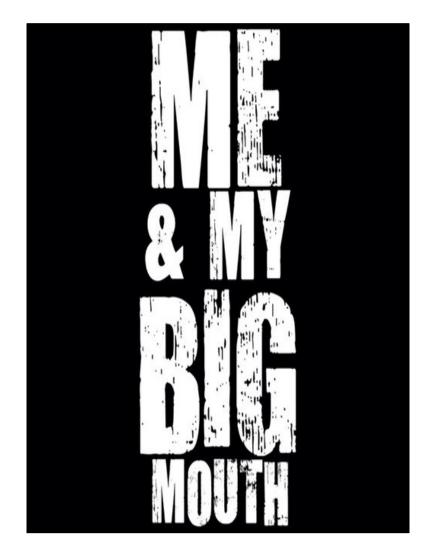
Survival Oriented Arrest Resuscitation

Mario J. Weber, JD, MPA, NRP Alexandria Fire Department

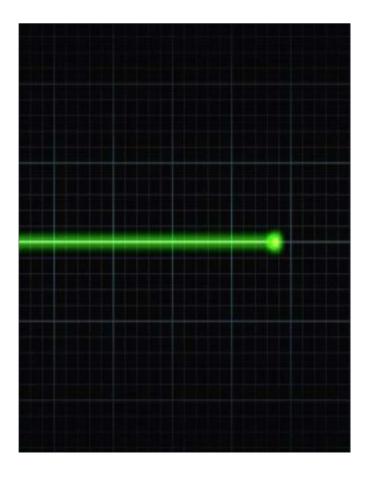

Overview

- Cardiac arrest survival
- High-performance CPR
- Team-level logistics
- Feedback and measurement
- Continuous quality improvement
- "The Alexandria Way"
- Evidence-based resuscitation

Why Am I Here?

- The "Code From Hell"
- A careless suggestion

 What about a "pit crew"?
- Be careful what you ask for...


My Big Secret...

I Hate Codes

- They're nasty
- They're often loud and disorganized
- Are we just abusing dead bodies?


Dead is Dead, Right?

 Do we spend too much time and effort trying to save dead people?

Dead is Dead, Right?

 Do we spend too much time and effort trying to save dead people?

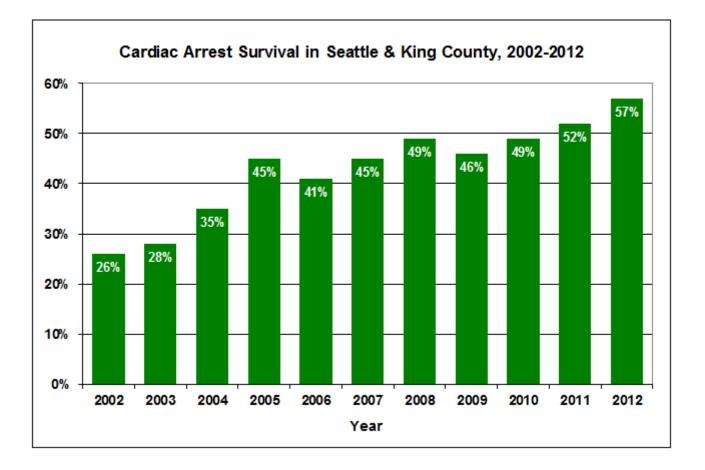
So Why Am I Really Here?

- We aren't going to stop running codes (are we?)
- More importantly...

We CAN Save People in Cardiac Arrest

(More than a few, actually)

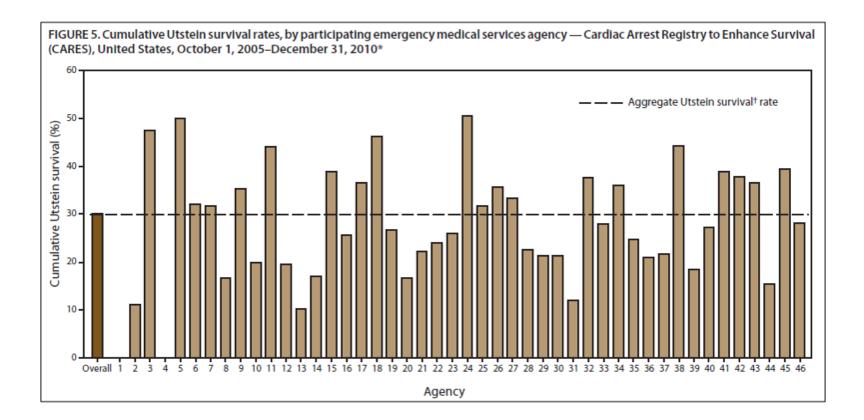
What is Cardiac Arrest Survival?


- Return of Spontaneous Circulation (ROSC)
 - Got a pulse?
- Survival to Discharge
 - Leaving the hospital?
 - Good neurological function?

"ROSC [without survival] ain't worth dick."

Dr. Corey Slovis, Medical Director, Metro Nashville FD

Survival Rates Can Exceed 50 percent


(Cardiac, Witnessed, Shockable Rhythm)

Public Health – Seattle & King County. Division of EMS. (2013). Annual Report to the King County Council. 10 Retrieved from http://www.kingcounty.gov/healthservices/health/ems.aspx.


But Not All Systems Are Created Equal

(Cardiac, Witnessed, Shockable Rhythm)

Centers for Disease Control and Prevention. (2011). Out-of-hospital cardiac arrest surveillance – Cardiac Arrest Registry to Enhance Survival (CARES), United States, October 1, 2005-December 31, 2010. *Morbidity and* 11 *Mortality Weekly Report, 60*(8), 1-19.

Some Systems Are Simply Better (All Cardiac)

Centers for Disease Control and Prevention. (2011). Out-of-hospital cardiac arrest surveillance – Cardiac Arrest Registry to Enhance Survival (CARES), United States, October 1, 2005-December 31, 2010. *Morbidity and Mortality Weekly Report, 60*(8), 1-19.

And It's Not Simply a Matter of Chance

"It seems likely that these differences reflect, in part, regional differences in the availability of emergency cardiac care [including] bystander cpr, lay responder defibrillation programs, EMS factors such as experience of personnel and types of interventions provided by EMS personnel..."

ORIGINAL CONTRIBUTION

Regional Variation in Out-of-Hospital Cardiac Arrest Incidence and Outcome

IAMA 2008-300(12)-1423-1431

come of OHCA.

Design and Setting

METHODS

ally appropriate public health initia-

tives, community support, and equi-

table access to high-quality prehospital

emergency care. We hypothesized that

there would be significant regional

variation in the incidence and out-

The Resuscitation Outcomes Consor-

tium (ROC) is a clinical research net-

work conducting research in the areas

of cardiopulmonary arrest and severe

Graham Nichol, MD, MPH
Elizabeth Thomas, MSc
Clifton W. Callaway, MD, PhD
Jerris Hedges, MD, MS
Judy L. Powell, BSN
Tom P. Aufderheide, MD
Tom Rea, MD
Robert Lowe, MD, MPH
Todd Brown, MD
John Dreyer, MD
Dan Davis, MD
Ahamed Idris, MD
Ian Stiell, MD, MSc

T REMAINS TO BE DETERMINED HOW often out-of-hospital cardiac arrest (OHCA) occurs. Recent sources indicate that about 166 000 to 310 000 Americans per year experience an OHCA,¹ although resuscitation is not attempted in many of these cases. The reported incidence of OHCA² and reported survival to discharge after OHCA are highly variable.³

of OHCA is essential to evaluate progress toward improving public health by reducing cardiovascular disease. Clinical trials often exclude patients at higher risk of poor outcomes, so estimation of the burden of illness based only on those enrolled in trials is subject to bias. Knowledge of regional variation in outcomes after cardiac arrest could guide identification of effective interventions that are used in some communities but have not been implemented in others. Potential interventions include cultur-

See also pp 1432 and 1462.

©2008 American Medical Association. All rights reserved.

Context The health and policy implications of regional variation in incidence and outcome of out-of-hospital cardiac arrest remain to be determined.

Objective To evaluate whether cardiac arrest incidence and outcome differ across geographic regions.

Design, Setting, and Patients Prospective observational study (the Resuscitation Outcomes Consortium) of all out-of-hospital cardiac arrests in 10 North American sites (& US and 2 Canadian) from May 1, 2006, to April 30, 2007, followed up to hospital discharge, and including data available as of June 28, 2008. Cases (aged 0-108 years) were assessed by organized emergency medical services (EMS) personnel, did not have traumatic Injury, and received attempts at external defibrillation or chest compressions or resuscitation was not attempted. Census data were used to determine rates adjusted for age and sex.

Main Outcome Measures Incidence rate, mortality rate, case-fatality rate, and survival to discharge for patients assessed or treated by EMS personnel or with an initial rhythm of ventricular fibrillation.

Results Among the 10 sites, the total catchment population was 21.4 million, and there were 20.520 cardiac arrests. A total of 11.898 (s8.0%) had resucitation attempted; 2729 (22.9% of treated) had initial rhythm of ventricular tiohillation or ventricular tachycardia or thythms that were shockable by an automated external defibrillator, and 954 (4.6% of total) were sickable as 20.5 were stored as 20.

Conclusion In this study involving 10 geographic regions in North America, there were significant and important regional differences in out-of-hospital cardiac arrest incidence and outcome.

www.jama.com

13

Corresponding Author: Graham Nichol, MD, MPH, University of Washington-Harboview Center for Prehospital Emergency Care, Box 359727, 325 Ninth Ave, Seattle, WA 98104 (nichol@u.washington.edu).

(Reprinted) JAMA, September 24, 2008-Vol 300, No. 12 1423

How Can We Improve Survival?

Improve CPR Quality

AHA Consensus Statement

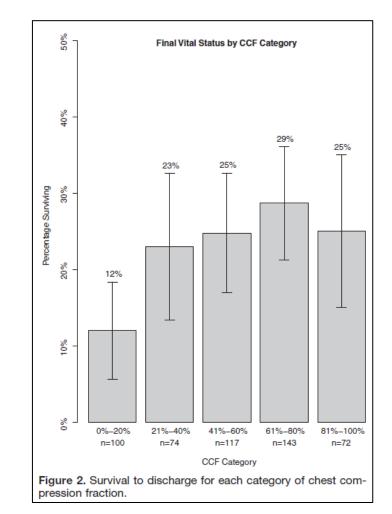
Cardiopulmonary Resuscitation Quality: Improving Cardiac Resuscitation Outcomes Both Inside and Outside the Hospital

A Consensus Statement From the American Heart Association

Endorsed by the American College of Emergency Physicians and the Society of Critical Care Medicine

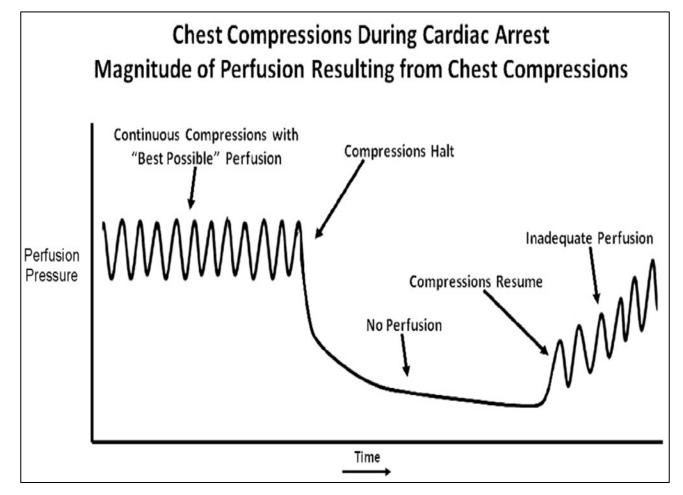
Meaney, P.A. et al. (2013). Cardiopulmonary resuscitation quality: Improving cardiac resuscitation outcomes both inside and outside the hospital: A consensus statement from the American Heart Association. *Circulation*_{\pm 5} *128*(4), 417-435.

Improve CPR Quality


- Cardiac arrest survival depends on CPR quality
 - Poor quality CPR is a "preventable harm"
- Four elements related to CPR quality:
 - High-performance CPR
 - Team-level logistics
 - Monitoring and feedback
 - Continuous quality improvement

Meaney, P.A. et al. (2013). Cardiopulmonary resuscitation quality: Improving cardiac resuscitation outcomes both inside and outside the hospital: A consensus statement from the American Heart Association. *Circulation* 128(4), 417-435.

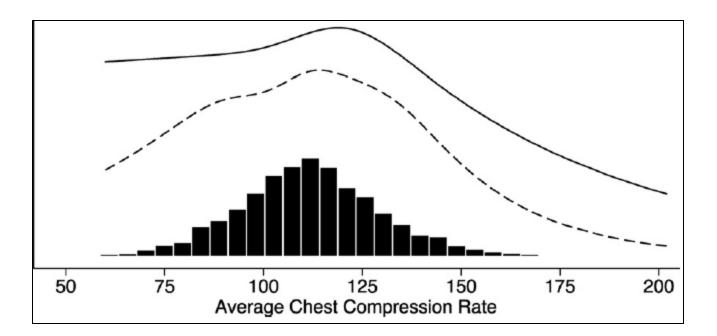
What Is High-Performance CPR?


Minimally Interrupted Compressions

- Higher chest compression fractions (CCF) are associated with higher rates of survival
- Lower CCF →
 Decreased Survival

Christenson, J. et al. (2009). Chest compression fraction determines survival in patients with out-ofhospital ventricular fibrillation. *Circulation*, *120*(13), 1241-1247; Vaillancourt, C. et al. (2011). The impact of increased chest compression fraction on return of spontaneous circulation for out-of-hospital cardiac arrest patients not in ventricular fibrillation. *Resuscitation*, *82*(12), 1501-1507.

Minimally Interrupted Compressions



Coronary Perfusion Pressure > 15 mmHg

Cunningham, L.M. et al. (2012). Cardiopulmonary resuscitation for cardiac arrest: the importance of uninterrupted chest compressions in cardiac arrest resuscitation. *AJEM*, *30*(8), 1630-1638.; Sutton,

Chest Compression Rate: 100-120/min

 ROSC peaks at 120 compressions/minute and then declines at faster rates

Idris, A.H. et al. (2012). Relationship between chest compression rates and outcomes from cardiac arrest. 20 *Circulation, 125*(24), 3004-3012.

Chest Compression Depth > 2 inches

(1/3 of the chest in children and infants)

 Deeper chest compressions are associated with successful defibrillation

Edelson, D.P. et al. (2006). Effects of compression depth and pre-shock pauses predict defibrillation failure during cardiac arrest. *Resuscitation*, *71*(2), 137-145.

Full Chest Recoil: No Leaning

 Incomplete chest wall recoil impedes venous return to the heart, decreasing MAP and both coronary and cerebral perfusion pressures.

Yannopoulos, D. et al. (2005). Effects of incomplete chest wall decompression during cardiopulmonary resuscitation on coronary and cerebral perfusion pressures in a porcine model of cardiac arrest. *Resuscitation*,22 64(3), 363-372.

patient in arrest even during chest compressions. When sudden arrhythmic arrest is present, oxygen content is initially sufficient, and high-quality chest compressions can circulate oxygenated blood throughout the body. Studies in animals and humans suggest that compressions without ventilations may be adequate early in nonasphyxial arrests.^{51–54} When asphyxia

- Too much ventilation \rightarrow Decreased survival
 - BVM ventilation decreases CCF
 - BVM ventilation decreases CPP

Meaney, P.A. et al. (2013). Cardiopulmonary resuscitation quality: Improving cardiac resuscitation outcomes both inside and outside the hospital: A consensus statement from the American Heart Association. *Circulation*₂₃ *128*(4), 417-435.

- Most cardiac arrest victims need <u>LESS</u> ventilation
 - Pre-arrest oxygen saturations persist for several minutes due to low blood flow during cardiac arrest
 - Oxygen delivery is limited by blood flow <u>NOT</u> the amount of oxygen in the blood
- Too much ventilation <u>HARMS</u> victims
 - Ventilation increases intra-thoracic pressure, causing diminished venous return and reduced cardiac output

• Exceptions

– Hypoxic arrest, pediatric patients

Pepe, P.E. et al. (2005). The detrimental effects of ventilation during low-blood-flow states. *Current Opinion in Critical Care, 11*(3), 212-218; Aufderheide, T.P., & Lurie, K.G. (2004). Death by hyperventilation: A common and life-threatening problem during cardiopulmonary resuscitation. *Critical Care Medicine, 32*(9), s345-s351.

 Initial delivery of continuous chest compressions (CCR) prior to defibrillation has been associated with improved survival

	No./ Total No.	No./ Total No. (%) of Patients				
Outcomes	Before MICR Training	After MICR Training				
Primary outcomes Survival-to-hospital discharge	4/218 (1.8)	36/668 (5.4)				
Survival with witnessed VF	2/43 (4.7)	23/131 (17.6)				
Secondary outcomes Return of spontaneous circulation	34/218 (15.6)	154/668 (23.1)				
Survival-to-hospital admission	35/218 (16.1)	113/668 (16.9)				

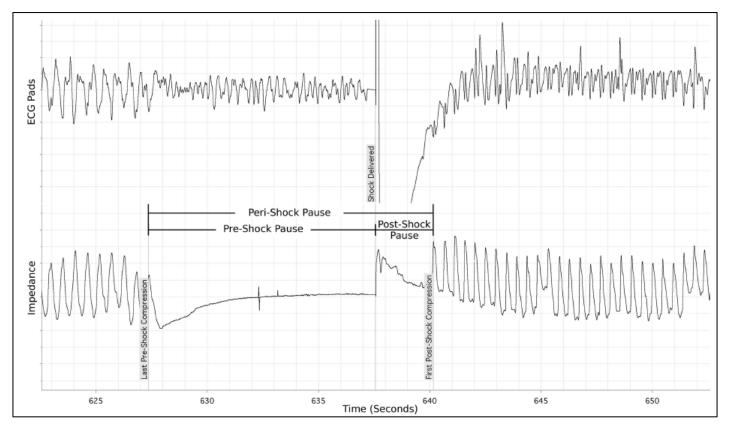
Bobrow, B.J. et al. (2008). Minimally interrupted cardiac resuscitation by emergency medical services for out-ofhospital cardiac arrest. *JAMA, 299*(10), 1158-1165; Kellum, M.J. et al. (2006). Cardiocerebral resuscitation 25 improves survival of patients with out-of-hospital cardiac arrest. *Am J Med, 119*(4), 335-340.

 Similarly, post-shock delivery of chest compressions using a ratio of 50:2 has also been associated with improved survival

Table 2. F	ROSC and Survivors, Witnessed VF Patient Population							
	Preprotocol Cohort, n (%)	Postprotocol Cohort, n (%)	Unadjusted OR (95% Cl)					
Witnessed VF	143	57	NA					
ROSC	54 (37.8)	34 (59.6)	2.44 (1.24-4.80)					
Discharge aliv	/e 32 (22.4)	25 (43.9)	2.71 (1.34–5.49)					
OR indicates odds ratio; VF, ventricular fibrillation; and ROSC, return of spontaneous circulation.								

Garza, A.G. et al. (2009). Improved patient survival using a modified resuscitation protocol for out-of-hospital ₂₆ cardiac arrest. *Circulation*, *119*(19), 2597-2605.

How Do We Achieve High-Performance CPR?


Switch Compressors Efficiently

- CPR quality declines quickly after one minute
 - CPR providers don't recognize their fatigue until after five minutes
- Switch compressors on each pulse check
- One compressor on each side of chest
- Automatically resume compressions after each rhythm check
 - Less than 10 seconds total time off chest
 - Not sure if there's a pulse? Back on the chest!

McDonald, C.H. et al. (2013). Rescuer fatigue under the 2010 ERC guidelines, and its effect on cardiopulmonary resuscitation (CPR) performance. *Emergency Medicine Journal, 30*(8), 623-627; Hightower, D. et al. (1995). 28 Decay in quality of closed-chest compressions over time. *Annals of Emergency Medicine, 26*(3), 300-303.

Reduce the Peri-Shock Pause

 Longer pre-shock and post-shock pauses are associated with a decrease in survival

Cheskes, S. et al. (2011). Perishock pause: An independent predictor of survival from out-of-hospital shockable cardiac arrest. *Circulation*, 124(1), 58-66.

Reduce the Peri-Shock Pause

- Resume compressions while the AED is charging
 - STOP compressions before pushing the SHOCK button
- Pre-charge the defibrillator prior to each pulse check
 - DUMP the charge if non-shockable rhythm
- Resume compressions immediately after each shock
 - Don't wait for AED or PMIC prompt!

Reduce Ventilations

• Rate less than 12 breaths per minute

- Advanced Airway: 8-10 breaths/min

- DO NOT ventilate prior to first rhythm check
 - Unless arrest is secondary to asphyxia or hypoxia (choking, drowning, CO poisoning, etc.)
- Ventilate at a ratio of 50:2
 - Deliver each breath over 1 second
 - Only enough volume to produce chest rise

- Studies have shown a NEGATIVE association between intubation and cardiac arrest outcomes compared to BVM*
 - Decreased ROSC
 - Decreased Survival to Discharge
 - Decreased Neurologically-Favorable Outcomes
- Similar results for supra-glottic airways
- Further study needed

• Numerous research articles on the subject

- Fouche, P.F. et al. (2014). Airways in out-of-hospital cardiac arrest: Systemic review and meta-analysis. *Prehospital Emergency Care* 18(2), 244-256
- McMullen, J. et al. (2014). Airway management and out-of-hospital cardiac arrest outcome in the CARES registry. *Resuscitation*, 85(5), 617-622
- Hasegawa, K. et al. (2013). Association of prehospital advanced airway management with neurologic outcome and survival in patients with out-ofhospital cardiac arrest. *JAMA*, 309(3), 257-266
- Egly, J. et al. (2011). Assessing the impact of prehospital intubation on survival in out-of-hospital cardiac arrest. *Prehospital Emergency Care*, 15(1), 44-49
- Hanif, M.A. et al. (2010). Advanced airway management does not improve outcome of out-of-hospital cardiac arrest. *Academic Emergency Medicine*, *17*(9), 926-931
- Studnek, J.R. et al. (2010). The association between prehospital endotracheal intubation attempts and survival to hospital discharge among out-of-hospital cardiac arrest patients. *Academic Emergency Medicine*, 17(9), 918-925.

 Table 2. Unconditional Logistic Regression Analyses for Outcomes Comparing Prehospital Advanced Airway Management vs Bag-Valve-Mask

 Ventilation

No.				Advanced Airway Management					
			Overall		Endotracheal Intubation		Supraglottic Airway		
	Total No. of Patients		No. (%)	OR (95% Cl) vs Bag-Valve-Mask ^a	No. (%)	OR (95% Cl) vs Bag-Valve-Mask ^a	No. (%)	OR (95% Cl) vs Bag-Valve-Mask ^a	
Total	649359	367837 (56.7)	281 522 (43.4)		41 972 (6.5)		239 550 (36.9)		
Return of spontaneous circulation Unadjusted	649326	25 904 (7.0)	16299 (5.8)	0.81 (0.79-0.83)	3514 (8.4)	1.21 (1.16-1.25)	12785 (5.3)	0.74 (0.73-0.76)	
Adjusted for selected variables ^b				0.67 (0.66-0.69)		0.86 (0.82-0.89)		0.64 (0.62-0.65)	
Adjusted for all variables ^c				0.57 (0.56-0.58)		0.73 (0.70-0.77)		0.54 (0.52-0.55)	
One-month survival Unadjusted	649350	19 643 (5.3)	10 933 (3.9)	0.72 (0.70-0.73)	1757 (4.2)	0.77 (0.74-0.81)	9176 (3.8)	0.71 (0.69-0.72)	
Adjusted for selected variables ^b				0.73 (0.71-0.75)		0.83 (0.79-0.88)		0.72 (0.70-0.74)	
Adjusted for all variables ^c				0.62 (0.60-0.64)		0.69 (0.65-0.73)		0.61 (0.59-0.63)	
Neurologically favorable survival Unadjusted	648 549	10759 (2.9)	3156 (1.1)	0.38 (0.36-0.39)	432 (1.0)	0.35 (0.31-0.38)	2724 (1.1)	0.38 (0.37-0.40)	
Adjusted for selected variables ^b				0.38 (0.37-0.40)		0.41 (0.37-0.45)		0.38 (0.36-0.40)	
Adjusted for all variables ^c				0.32 (0.30-0.33)		0.32 (0.29-0.36)		0.32 (0.30-0.33)	
Abbreviation: OR, odds ratio ^a P<.001 for all.									

Hasegawa, K. et al. (2013). Association of prehospital advanced airway management with neurologic outcome₃₅ and survival in patients with out-of-hospital cardiac arrest. *JAMA*, *309*(3), 257-266.

- ALS providers should weigh the NEED to insert an endotracheal tube ...
 - inability to ventilate using a BVM
 - actual airway compromise
- ... against the CONSEQUENCES of doing so
 - interrupting compressions
 - inadvertent hyperventilation
 - hyperoxia
 - distraction from tasks associated with survival

Delay Mechanical CPR

Several benefits

- Improved end-organ perfusion
- Enhanced cerebral
 blood flow
- Higher ETCO2 readings
- Increased ROSC
- CPR during transport
- BUT no proven survival benefit*

Westfall, M. et al. (2013). Mechanical versus manual chest compressions in out-of-hospital cardiac arrest: A ₃₇ meta-analysis. *Critical Care Medicine*, *41*(7), 1782-1789.

Delay Mechanical CPR

Only one study has shown improved survival

Ong, M.E.H. et al. (2006). Use of an automated, load-distributing band chest compression device for out-of-hospital cardiac arrest resuscitation. *JAMA*, 295(22), 2629-2637

Others studies have not (RCTs)

- Wik, L. et al. (2014). Manual vs. integrated automatic load-distributing band CPR with equal survival after out of hospital cardiac arrest. The randomized CIRC trial. *Resuscitation 85*(6), 741-748
- Rubertsson, S. et al. (2014). Mechanical chest compressions and simultaneous defibrillation vs conventional cardiopulmonary resuscitation in out-of-hospital cardiac arrest: The LINC randomized trial. *JAMA*, *311*(1), 53-61

One study has shown decreased survival

 Hallstrom, A. et al. (2006). Manual chest compression vs use of an automated chest compression device during resuscitation following out-of-hospital cardiac arrest. JAMA, 295(22), 2620-2628.

Delay Mechanical CPR

- Why not apply immediately?
 - Delays or interrupts
 chest compressions
- Reduction in CCF may explain lack of survival benefit
 - Need to integrate
 without sacrificing
 survival!

Lewis, R.J., & Niemann, J.T. (2006). Manual vs device-assisted CPR: Reconciling apparently contradictory results JAMA, 295(22), 2661-2664.

Team-Level Logistics

Cardiac Resuscitation is a Team Activity

- CPR is not performed in a vacuum
 - Consists of multiple rescuers and tasks
- A team approach leads to improved CPR
 - Manages distractions from non-CPR tasks
 - Coordinates pauses in compressions
- Having a team leader is associated with improved CPR
 - In particular, increased CCF

Monitoring and Feedback

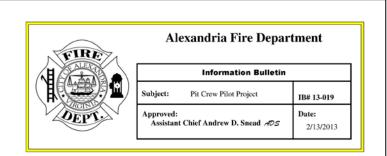
Monitoring and Feedback

- "If you don't measure it, you can't improve it."
- How is the patient doing?
 - ETCO2 > 20 mm Hg
 - ETCO2 reflects cardiac output during CPR
 - ETCO2 < 10 predicts unsuccessful resuscitation
- How are the rescuers performing?
 - Chest compression rate, depth, and recoil
 - Human supervision and direction
 - Real-time feedback

Continuous Quality Improvement

Continuous Quality Improvement

- Conduct a debriefing following codes
 - Brief, focused discussion following a resuscitation
 - Review individual actions and team performance
 - Checklists may help structure the discussion
- Obtain and disseminate retrospective data
 - Objective information regarding CPR metrics
 - Compression ratio (CCF), compression rate, etc.
- Implement a continuous training program
 - Individual CPR skills
 - Resuscitation team performance


"The Alexandria Way"

From Pit Crew to SOAR

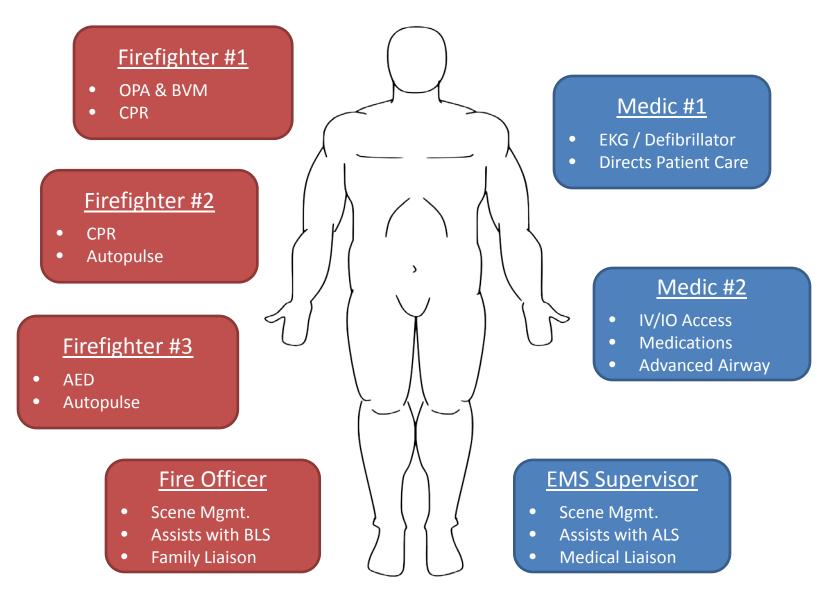
The "Pit Crew"

February 2013

- Pilot program
 - Station 207
 - Focus on roles of both
 BLS and ALS providers
 - "Pit crew" approach
 - Not evidence-based
 - EMT refresher training

On February 23, 2013, the Alexandria Fire Department will initiate a pilot program for a "pit crew" approach to managing cardiac arrest patients. This pilot program (the Pit Crew Program) is intended to standardize the management of cardiac arrest calls by establishing pre-defined roles and responsibilities for each FES and EMS provider on the scene. Fire/EMS systems that have adopted similar approaches report that the use of a "pit crew" or team approach reduces delays and interruptions in the performance of lifesaving interventions and may result in better patient outcomes.

The goal of the Pit Crew Program is to improve the delivery of BLS and ALS care to cardiac arrest patients by using a standardized team approach to the management of those patients. Consistent with this goal, the program emphasizes the performance of lifesaving BLS interventions by FES personnel both prior to, and concurrent with, the arrival of EMS personnel. In addition, the Pit Crew Program promotes the orderly delivery of ALS care by formally defining the roles and responsibilities of EMS personnel on the scene.


The Pit Crew Program is not intended to significantly modify current AFD practice (FES and EMS providers working together as a team to resuscitate a patient). Similar to the use of the NOVA Operations Manuals, the Pit Crew Program seeks only to improve the current process by ensuring that all FES and EMS providers know their roles prior to arrival on the scene of a cardiac arrest and are able to immediately initiate life-saving interventions without prompting or direction. It provides a framework from which we can expect to operate; however, it does not take management and decision-making capability away from the Incident Commander and other providers on scene. There is always the opportunity to make adjustments to the treatment of a patient based on the specific needs of an incident.

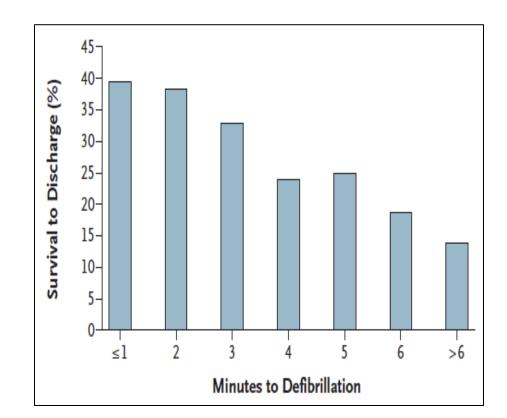
As part of the Pit Crew Program, an EMS Supervisor (in conjunction with the FES officer) will conduct a "hot wash" immediately following the conclusion of each cardiac arrest call. Information to be discussed shall include, but not be limited to:

- Overall incident operation and flow
- Overview of the patient's condition (upon arrival and at the conclusion of the call)

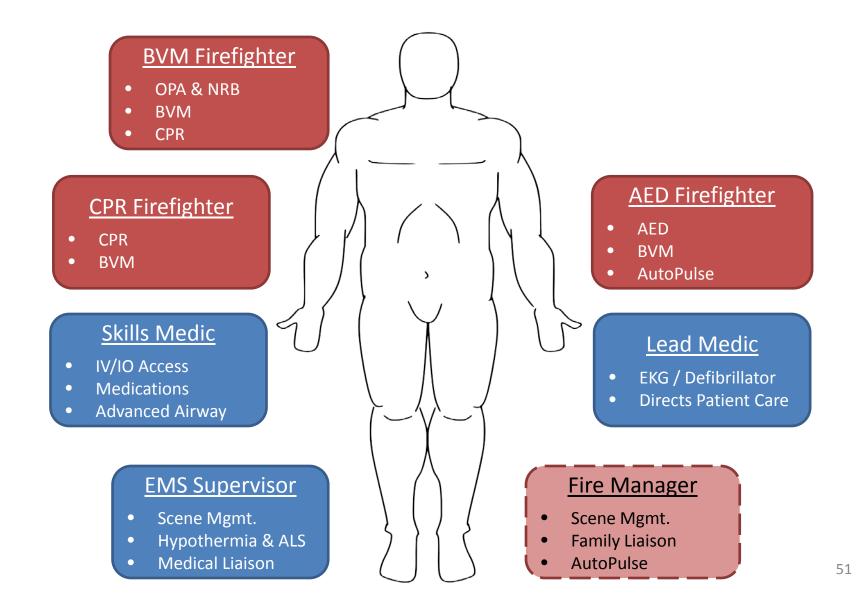
1

The "Pit Crew"

The "Pit Crew"

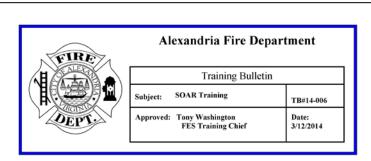

Start CPR	•FF2 begins compressions •FF1 inserts OPA and ventilates using BVM •FF3 readies Autopulse		
Apply AED/Defibrillator	•FF3 applies AED/LifePak pads and follows prompts •PM1 interprets rhythm and directs shocks		
Resume CPR	•FF2 resumes compressions, rotates with FF1 •FF1 ventilates using BVM, rotates with FF2 •FF2 and FF3 apply Autopulse		
Obtain IV/IO Access & Administer Medications	•PM2 obtains IV/IO access, administers medications •EMS Supervisor obtains medical history, alerts hospital		
Consider Advanced Airway	 PM2 inserts advanced airway EMS Supervisor/ALS Firefighter assists as needed 		

Note: Actions in **Blue** performed after ALS has made patient contact.


SOAR: Phase I

December 2013

- Prepare to expand
 - Examine the evidence
 - Focus on interventions associated with survival
 - Delay ventilation
 - Delay intubation
 - Delay mechanical CPR
 - Begin to measure outcomes
 - Online training


SOAR: Phase I

SOAR: Phase I

<u>April 2014</u>

- Expand training
 - Conduct large lectures and practical training sessions
 - Obtain feedback and suggestions from providers
 - Measure AutoPulse application time
 - 45 seconds or longer

COURSE: Survival Oriented Arrest Resuscitation Training (SOAR)

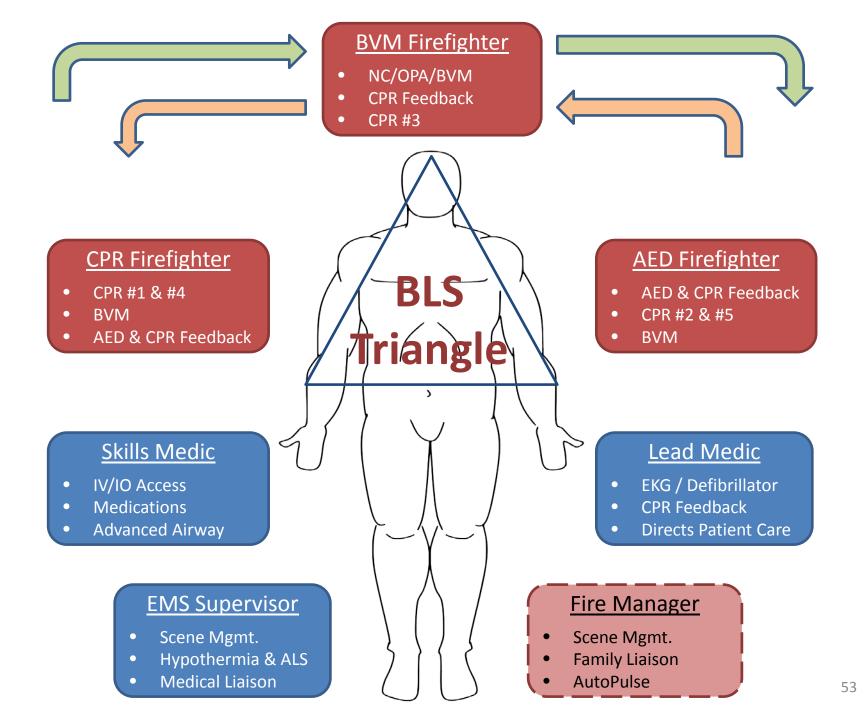
DATES:	April 14th (A-Fire, B-EMS)
	April 16th (C-Fire, C-EMS)
	April 17th (B-Fire, A-EMS)
	April 18th (C-Fire, D- EMS)

TIME: 0830, 1000, 1300

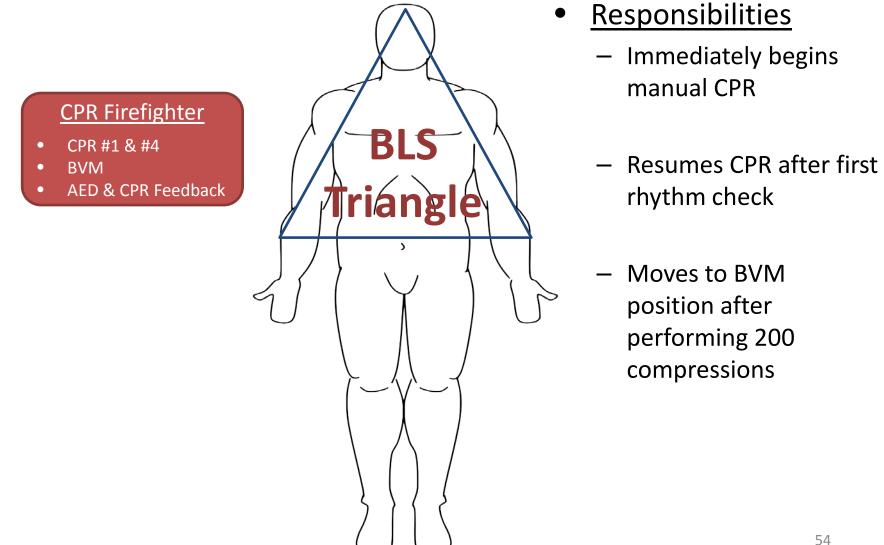
LOCATION: Joshua A. Weissman Professional Development Center

COURSE DESCRIPTION

All personnel will discuss and practice methods to increase cardiac arrest survival for our patients.

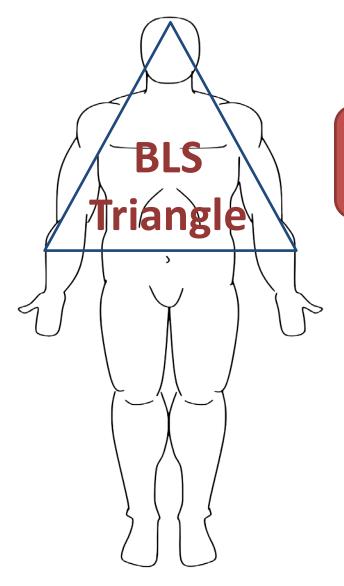

AUDIENCE

All Fire Department response personnel


PREREQUISITES

Target Solutions assignment "SOARS" Training.

1



CPR Firefighter

AED Firefighter

- <u>Responsibilities</u>
 - Powers on AED and follows instructions
 - Provides CPR feedback
 - Takes over CPR after
 CPR Firefighter
 completes 200
 compressions
 - Moves to BVM position after performing 200 compressions

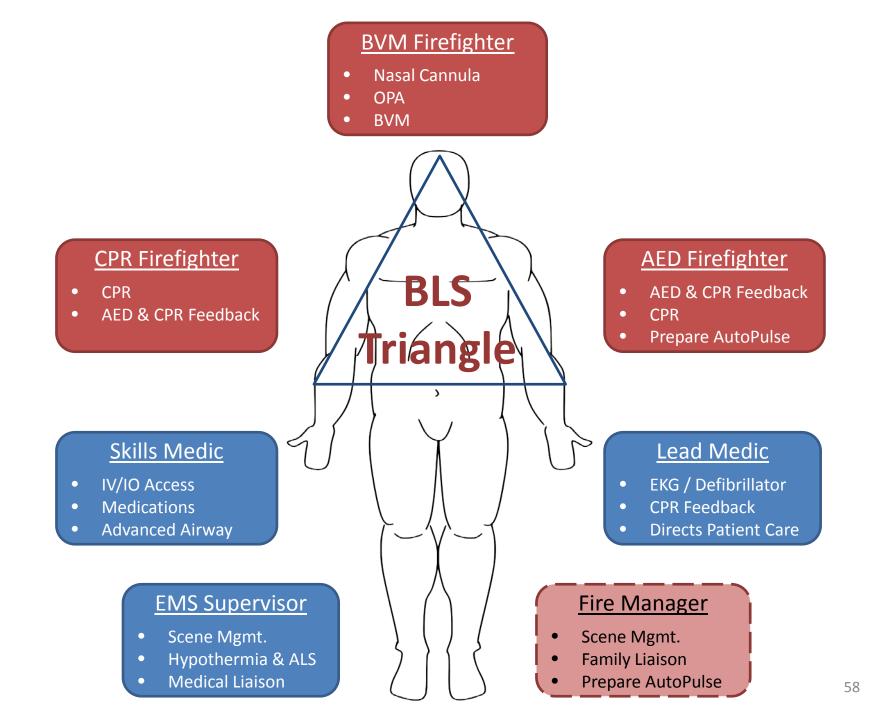
AED Firefighter

- AED & CPR Feedback
- CPR #2 & #5
- BVM

BVM Firefighter

NC/OPA/BVM **CPR Feedback CPR #3** • BL! friang

BVM Firefighter

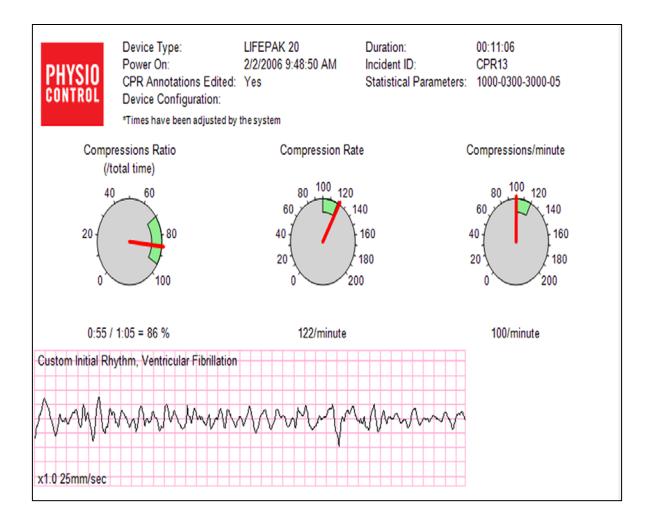

- <u>Responsibilities</u>
 - Inserts OPA
 - Applies NC and connects to oxygen at 15 lpm
 - Ventilates at 50:2 after first rhythm check
 - Always switches
 position with last
 compressor

SOAR: Phase II

July 2014

- New protocol released
 - "Official" expansion to entire department
 - Simplified based on provider feedback
 - Unit-level practical training scenarios

	Alexandria Fire Department Emergency Medical Services Division				
	Policy and Procedure # 33				
	Survival Oriented Arrest Resuscitation - SOAR				
	Date: July 2014				
CPR and def	od of survival from cardiac arrest decreases approximately 10% for each minute that ibrillation are delayed. Interruptions in chest compressions further reduce the 'survival. The following components are critical to a successful resuscitation:				
 Priori airwa Limit Full c 	diate initiation of chest compressions and application of an AED tizing uninterrupted manual chest compressions over mechanical CPR, advanced y management, and medication administration ed number and short duration (< 10 seconds) of interruptions to chest compressions hest recoil between compressions lation targeted to minimal chest rise				
INDICATIO	N				
 Apne 	ic and pulseless adult (age >8 or signs of puberty)				
PROCEDUR	E				
1. Estal	blish the BLS triangle (See Figure 1)				
b.	 The CPR Firefighter shall begin uninterrupted chest compressions. Rate of 100-120 compressions/minute Depth of at least 2 inches No interruptions except to ventilate, analyze rhythm, or defibrillate Full chest recoil. The AED Firefighter shall turn on the AED and follow its instructions. If ALS is on the scene, the AED Firefighter may instead assist the Lead Medic with application of defibrillator pads to patient's chest. The AED Firefighter may assist the BVM Firefighter with application of supplemental oxygen and airway management (i.e., OPA insertion). The BVM Firefighter shall apply supplemental oxygen and prepare to ventilate. Apply a nasal cannula and connect to oxygen at 10 liters/min (first bottle) Insert a properly-sized oropharyngeal airway (OPA). Obtain a mask seal with a bag-valve mask (BVM) connected to oxygen at 15 liters/min (Scond botte, when it becomes available). 				


SOAR Checklist

SOAR CHECKLIST						
Establish the BLS Triangle – Start CPR						
Begin chest compressions						
Turn on AED and follow prompts						
Apply NC at 10 lpm						
Insert OPA						
Apply BVM at 15 lpm, prepare to ventilate						
Perform 5 rounds of 200 compressions						
• 100-120/minute	Round 1	200				
 Depth > 2 inches 	Round 2	200				
 Full chest recoil 	Round 3	200				
• 50:2 ventilation Round 4						
Prepare AutoPulse	200					
Prepare for Transport						
Apply AutoPulse						
Consider advanced airway						
Make a transport decision						

Performance Goals

- Compression ratio (CCF) > 80%
- Compression rate between 100 and 120
- Minimal interruptions
- Each CPR pause < 10 seconds
 - Rhythm check
 - Peri-shock pause
 - AutoPulse application (delayed)
 - Intubation (delayed)

Performance Measurement

Quality Improvement

CPR QUIK-VIEW	Interval Statistics			
0 min 1 min Power On	CPR Ratio, %	Compr. Ratio, %	Compr. Rate	Compr. /min
-1:00				
0:00	85	84	103	86
1:00	100	100	106	101
2:00	100	100	110	108
3:00	100	90	110	97
4:00	100	100	112	112
5:00	100	100	112	106
6:00 7:00	100	100	102	101
7:00	100	93	107	100
8:00	100	100	116	115
9:00	86	86	108	92

Quality Improvement

2014 Cardiac Arrest Statistics

(through the end of September)

Category	Total	Attempted	Cardiac	Witnessed	VF/VT	ROSC	Survival
Attempted	76	76	63	29	9	21	5
Percentage	100%	100%	83%	38%	12%	28%	7%
CARES	63	63	63	24	9	17	5
Percentage	83%	100%	100%	38%	14%	27%	8%
Utstein	7	7	7	7	7	4	2
Percentage	9%	100%	100%	100%	100%	57%	29%

Evidence-Based Resuscitation

- High-quality CPR
- Minimally-interrupted chest compressions
- Early defibrillation
- Nothing else!

• Epinephrine

- Maybe if administered early for non-shockable rhythms
- Otherwise, only
 improves ROSC (i.e., no
 survival benefit)

Donnino, M.W. et al. (2014). Time to administration of epinephrine and outcome after in-hospital cardiac arrest with non-shockable rhythms: retrospective analysis of large in-hospital data registry. *BMJ, 348*; Lin, S. et al. (2014). Adrenaline for out-of-hospital cardiac arrest resuscitation: A systematic review and meta-analysis of andomized controlled trials. *Resuscitation, 85*(6), 732-740.

- Other cardiac medications
 - <u>Vasopressin</u>: no difference
 - <u>Amiodarone</u>: no survival benefit
 - <u>Lidocaine</u>: no survival benefit
 - <u>Magnesium</u>: no difference outside of torsades VT
 - <u>Atropine</u>: insufficient evidence, unlikely to benefit
 - <u>Bicarb</u>: conflicting evidence, evidence of harm
 - <u>Calcium</u>: no survival benefit

NDC 0408-4900-5 I.V. For Cardiac Arrhythmias LIDOCAINE Inj., USP 100 mg/5 mL Lifeshield nd 20-Gaug protected needlo ma DT 93-342-DK EXP 1SEP2012 Hospir R only PRESS AND PULL TO OPEN

Neumar, R.W. et al. (2010). Part 8: Adult advanced cardiovascular life support: 2010 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. *Circulation, 122*(18 suppl 3),₆₇ S729-S767.

- Impedance threshold device (ResQPOD[®])
 - No survival benefit when used by itself

Cave, D.M. et al. (2010). Part 7: CPR techniques and devices: 2010 American Heart Association guidelines for 68 cardiopulmonary resuscitation and emergency cardiovascular care. *Circulation, 122*(18 suppl 3), S720-S728.

- Impedance threshold device (ResQPOD[®])
 - No survival benefit when used by itself
 - Survival benefit shown when used in conjunction with active compressiondecompression (ACD)
 - CardioPump[®] has received preliminary FDA approval

Frascone, R.J. et al. (2013). Treatment of non-traumatic out-of-hospital cardiac arrest with active compression decompression cardiopulmonary resuscitation plus an impedance threshold device. *Resuscitation, 84*(9), 1214-1222; Aufderheide, T.P. et al. (2011). Standard cardiopulmonary resuscitation versus active compression-decompression cardiopulmonary resuscitation with augmentation of negative intrathoracic pressure for 69 out-of-hospital cardiac arrest: a randomised trial. *Lancet, 377*(9762), 301-311.

• Therapeutic hypothermia

- Questionable benefit of prehospital initiation
- Concern with side effects
 (e.g., pulmonary edema)
- Intra-arrest hypothermia: may be beneficial if initiated early

Kim, F. et al. (2014). Effect of prehospital induction of mild hypothermia on survival and neurological status among adults with cardiac arrest: a randomized clinical trial. *JAMA*, *311*(1), 45-52; Bernard, S.A. et al. (2010). Induction of therapeutic hypothermia by paramedics after resuscitation from out-of-hospital ventricular fibrillation cardiac arrest: A randomized controlled trial. *Circulation*, *122*(7), 737-742; but see Scolleta, S. et al.₇₀ (2012). Intra-arrest hypothermia during cardiac arrest: a systematic review. *Critical Care*, *16*(2), R41.

Summary

- High-quality CPR is key to improving survival
 - Minimally-interrupted chest compressions
 - Chest compression rate between 100 and 120
 - Chest compression depth greater than 2 inches
 - Full chest recoil (no leaning)
 - Less ventilation
- SOAR is a work in progress
 - It will take some time to show results
- Evidence-based resuscitation is the future!

Questions?

Mario J. Weber

mario.weber@m10-solutions.com