## HYPOTENSION DURING AND AFTER FIELD INTUBATION FOR TRAUMA

ASHER BRAND, MD

#### CBF = MAP - ICP

#### HEMODYNAMIC COLLAPSE IN SHOCKED PATIENTS

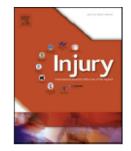
To improve is to change; to be perfect is to change often.

Winston Churchill

## The frequency and significance of postintubation hypotension during emergency airway management<sup>☆</sup> Alan C. Heffner MD<sup>a,b</sup>, Douglas Swords BA, MS III<sup>b</sup>, Jeffrey A. Kline MD<sup>b</sup>, Alan E. Jones MD<sup>b, c,\*</sup>

<sup>a</sup>Division of Critical Care Medicine, Department of Internal Medicine, Carolinas Medical Center, Charlotte, NC, USA <sup>b</sup>Department of Emergency Medicine, Carolinas Medical Center, Charlotte, NC, USA <sup>c</sup>Department of Emergency Medicine, University of Mississippi Medical Center, Jackson, MS, USA

N=336


## **25% INCIDENCE OF HYPOTENSION IN RSI**

### NORMOTENSIVE TO START

ETI ASSOC W/ HIGHER MORT = CI 1.9 (1.1-3.5)

The association between admission systolic blood pressure and mortality in significant traumatic brain injury: A multi-centre cohort study 2014

Gordon Fuller<sup>a,1,\*</sup>, Rebecca M. Hasler<sup>b,1</sup>, Nicole Mealing<sup>c</sup>, Thomas Lawrence<sup>a</sup>, Maralyn Woodford<sup>a</sup>, Peter Juni<sup>c</sup>, Fiona Lecky<sup>d</sup>



#### KNOWN HARM:

- Hypotension is associated with mortality in Trauma and especially TBI
- FULLER (<u>INJURY, 2014</u>) DEMONSTRATED RELATIONSHIP WITH MORTALITY TO MORTALITY:



- 1.5X IF SBP >120
- 2.0X IF SBP < 100
- 3.0X IF SBP < 90

This Matters!

## **DIFFICULTY WITH TERMS**

- "FENTANYL DROPPED HIS PRESSURE"
- WHAT IS HYPOTENSION

- DEPENDS ON CLINICAL SITUATION, PHYSIOLOGY, INJURIES, ETC

6

- LIMITS NOT REALLY ESTABLISHED (BTF WANTS SBP > 90)
- CLINICALLY SIGNIFICANT HYPOTENSION

### Redefining hypotension in traumatic brain injury

Cherisse Berry, Eric J. Ley, Marko Bukur, Darren Malinoski, Daniel R. Margulies, James Mirocha, Ali Salim \* Department of Surgery, Division of Trauma and Critical Care, Cedars-Sinai Medical Center, Los Angeles, CA, United States Injury, 2012

## TBI PTS > 15 YRS, ISOLATED BRAIN INJURY

## HEAD AIS > 3

## ADMITTED TO LEVEL I OR II

## N = 15,733

### Redefining hypotension in traumatic brain injury

Cherisse Berry, Eric J. Ley, Marko Bukur, Darren Malinoski, Daniel R. Margulies, James Mirocha, Ali Salim \* Department of Surgery, Division of Trauma and Critical Care, Cedars-Sinai Medical Center, Los Angeles, CA, United States

## 15-49 YRS: SBP < 110 OR: 1.98 (1.65-2.3) 50-69 YRS: SBP < 100 OR: 2.20 (1.46-3.31) > 70 YEARS: SBP < 110 OR: 1.92 (1.35-2.74)

# Prehospital risk factors of mortality and impaired consciousness after severe traumatic brain injury: an epidemiological study

Sophia Tohme<sup>1</sup>, Cecile Delhumeau<sup>1</sup>, Mathias Zuercher<sup>2</sup>, Guy Haller<sup>1,3</sup> and Bernhard Walder<sup>1\*</sup> 2014

- 589 pts Endpoints: <u>Death</u> or <u>GCS <13 at 2 wks</u>
- INCLUSION:
  - \* MEDIAN GCS = 4 (BUT SOME GCS 14).
  - \* OR, HEAD AIS > 3
- INCREASED RISK ASSOCIATED WITH:

HYPOXIA, HYPOTENSION, HYPOTHERMIA, TOTAL PREHOSPITAL TIME AND DIRECT TRIAGE

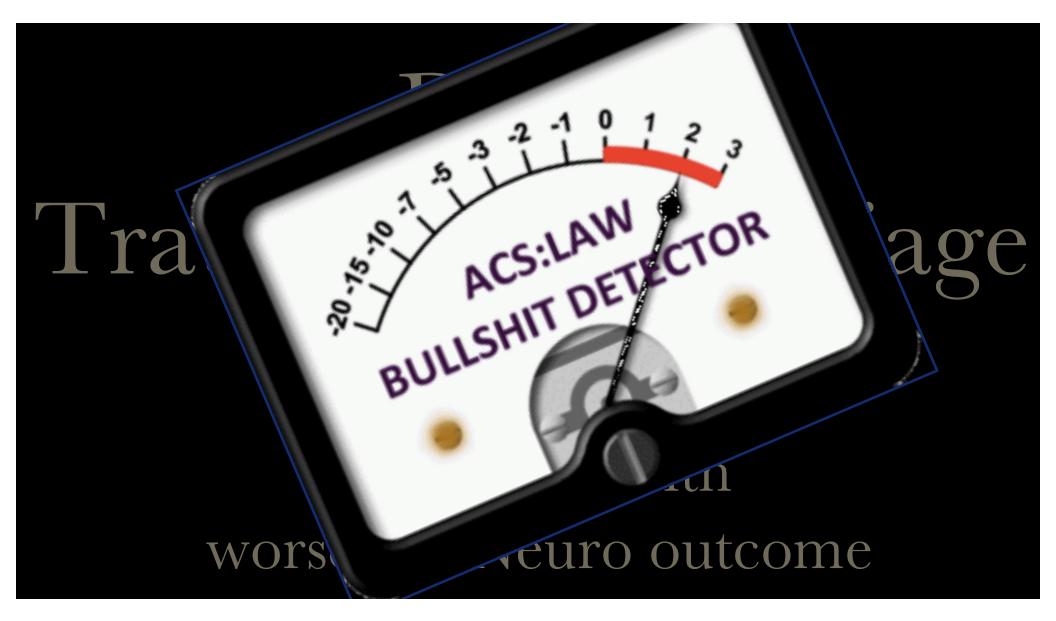
## Hypoxia 12.6%

## Hypotension 4.1%

## Hypothermia 24.8%

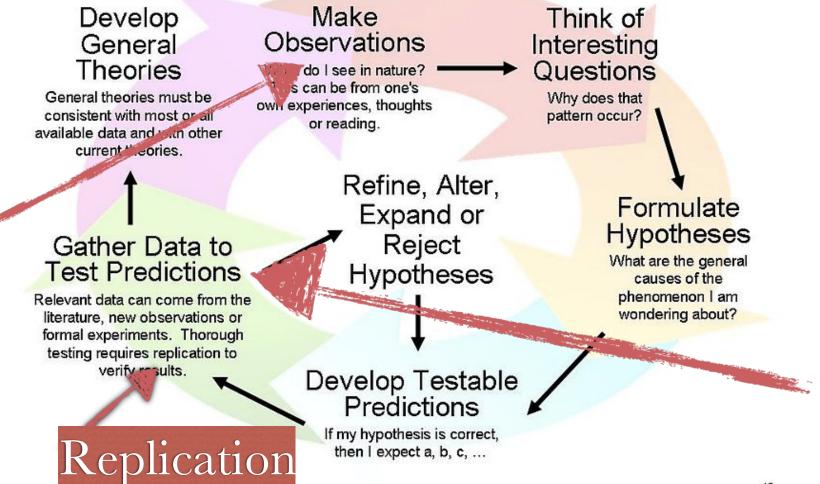
# Prehospital risk factors of mortality and impaired consciousness after severe traumatic brain injury: an epidemiological study

Sophia Tohme<sup>1</sup>, Cecile Delhumeau<sup>1</sup>, Mathias Zuercher<sup>2</sup>, Guy Haller<sup>1,3</sup> and Bernhard Walder<sup>1\*</sup>


## **Statistical Analysis (multivariate analysis)**

n=589

HYPOTENSION AND HYPOXIA ASSOCIATED WITH DEATH HYPOXIA ASSOCIATED WITH POOR OUTCOME


OK SO FAR - RIGHT

"INDIRECT ADMISSION WAS PROTECTIVE"





## The Scientific Method as an Ongoing Process



## SCIENCE

17

## Association does NOT IMPLY CAUSATION

- ASSOCIATIONS ARE OBSERVATIONS
- VERY EASY TO DRINK THE COOL-AID
- HUMAN NATURE







### • SAME STUDY

- HELICOPTER TRANSPORT TO LEVEL I SAME AS LEVEL II.

CI: (1.74 - 2.03) AND (1.64-2.00)



## **PREHOSPITAL AIRWAYS**

LARGER STUDIES

• VERY LITTLE SCIENTIFIC SUPPORT



20

## PRE-HOSPITAL ETI/RSI

- Vast majority of studies are associations
- Lots of Emotion



#### Prehospital care

## Prehospital non-drug assisted intubation for adult trauma patients with a Glasgow Coma Score less than 9

Christopher Charles Douglas Evans,<sup>1</sup> Robert J Brison,<sup>1</sup> Daniel Howes,<sup>1</sup> Ian G Stiell,<sup>2</sup> William Pickett<sup>1</sup>

INCREASED MORTALITY = 2.8(1.1-7.6)

**GROUND PROVIDERS** 

## Is Prehospital Endotracheal Intubation Associated with Improved Outcomes in Isolated Severe Head Injury? A Matched Cohort Analysis

Efstathios Karamanos, MD; Peep Talving, MD, PhD; Dimitra Skiada, MD; Melanie Osby, MD; Kenji Inaba, MD; Lydia Lam, MD; Ozgur Albuz, MD; Demetrios Demetriades, MD, PhD

CASE MATCHED COHORT

N=55 (165 MATCHED CONTROLS)

PH-ETI=69% MORTALITY

BASIC AIRWAY = 55% MORTALITY

P=.011

## WHY, OH WHY???

- LOTS OF STUDIES SHOWING GOOD SUCCESS RATES
- RSI IMPROVES FIRST PASS
- DON'T BELIEVE IT?
- Makes no sense

### Is Prehospital Endotracheal Intubation Associated with Improved Outcomes in Isolated Severe Head Injury? A Matched Cohort Analysis 2015

Efstathios Karamanos, MD; Peep Talving, MD, PhD; Dimitra Skiada, MD; Melanie Osby, MD; Kenji Inaba, MD; Lydia Lam, MD; Ozgur Albuz, MD; Demetrios Demetriades, MD, PhD

11% DESAT DURING RSI

9.5% SBP < 90

REHOSPITAL ANEST HESTOLOGISTS 71% HYPERVENTILATION

## Predictors of the complication of postintubation Mypotension during emergency airway management $\stackrel{ imes}{\sim}$

Alan C. Heffner MD<sup>a,b,\*</sup>, Douglas S. Swords BA, MS IV<sup>b</sup>, Marcy L. Nussbaum MS<sup>c</sup>, Jeffrey A. Kline MD<sup>b</sup>, Alan E. Jones MD<sup>b,d</sup>

<sup>a</sup>Division of Critical Care Medicine, Department of Internal Medicine, Charlotte, NC <sup>b</sup>Department of Emergency Medicine, Carolinas Medical Center, Charlotte, NC <sup>c</sup>Dickson Institute for Health Studies, Carolinas HealthCare System, Charlotte, NC <sup>d</sup>Department of Emergency Medicine, University of Mississippi Medical Center, Jackson, MS

N=300

2012

## STABLE FOR 30 MIN PRIOR TO RSI

## IF HYPOTENSIVE (SBP<90) THEN MORT INCREASED CI 2.1 (1.2-3.9)

Predictors of the complication of postintubation hypotension during emergency airway management  $\stackrel{ imes}{\sim}$ 

Alan C. Heffner MD<sup>a,b,\*</sup>, Douglas S. Swords BA, MS IV<sup>b</sup>, Marcy L. Nussbaum MS<sup>c</sup>, Jeffrey A. Kline MD<sup>b</sup>, Alan E. Jones MD<sup>b,d</sup>

| Variable                           | OR   | 95% CI    |
|------------------------------------|------|-----------|
| Preintubation SI                   | 55.1 | 13-232    |
| End-stage renal disease            | 3.7  | 1.1-13.1  |
| Chronic renal insufficiency        | 3.4  | 1.2-9.6   |
| Intubation for respiratory failure | 2.1  | 1.0-4.5   |
| Age                                | 1.03 | 1.01-1.04 |
| ACE inhibitor use                  | 0.3  | 0.1-0.7   |
| Intubation paralysis               | 0.04 | 0.003-0.4 |

## SHOCK INDEX

28

## • SI = HR/SBP

• 0.3-0.7 ARE "NORMAL"

| HEART<br>RATE | SBP | SHOCK<br>INDEX |
|---------------|-----|----------------|
| 110           | 140 | 0.8            |
| 120           | 120 | 1.0            |
| 120           | 100 | 1.2            |

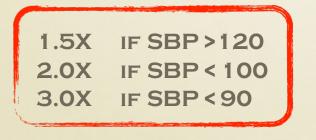
## Predictors of the complication of postintubation hypotension during emergency airway management $\stackrel{\mathrm{\scriptsize fr}}{\to}$

Alan C. Heffner MD<sup>a,b,\*</sup>, Douglas S. Swords BA, MS IV<sup>b</sup>, Marcy L. Nussbaum MS<sup>c</sup>, Jeffrey A. Kline MD<sup>b</sup>, Alan E. Jones MD<sup>b,d</sup>

| Pre-RSI SI group | Total   | PIH positive | PIH negative | OR   | 95% CI   |
|------------------|---------|--------------|--------------|------|----------|
| Shock Index      | n = 300 | n = 66       | n = 234      |      |          |
| <0.5             | 62      | 4 (6.5%)     | 58 (93.6%)   | 1.0  |          |
| 0.5-0.69         | 101     | 13 (12.9%)   | 88 (87.1%)   | 2.1  | 0.7-6.9  |
| 0.7-0.89         | 84      | 21 (25.0%)   | 63 (75.0%)   | 4.8  | 1.6-14.9 |
| 0.9-1.09         | 30      | 16 (53.3%)   | 14 (46.7%)   | 16.6 | 4.8-57.3 |
| >1.1             | 23      | 12 (52.2%)   | 11 (47.8%)   | 15.8 | 4.3-58.2 |

Cochrane-Armitage test for trend, P < .001.

LOWEST RATE IS 6.5%




## WHY DOES HYPOTENSION MATTER?

## • KNOWN HARM:

- HYPOTENSION IS ASSOCIATED WITH INCREASED MORTALITY IN TBI
- FULLER (INJURY, 2014) DEMONSTRATED RELATIONSHIP WITH MORTALITY TO MORTALITY:

31





BTF says keep SBP>90

Prehospital Rapid Sequence Intubation Improves Functional Outcome for Patients With Severe Traumatic Brain Injury: A Randomized Controlled Trial Barnard 2010

#### DOUBLE BLIND RCT

#### N = 299

#### IMPROVED "GOOD" FUNCTIONAL OUTCOME

NO MORTALITY DIFFERENCE

Prehospital Rapid Sequence Intubation Improves Functional Outcome for Patients With Severe Traumatic Brain Injury: A Randomized Controlled Trial

#### 360 CRITICAL CARE GROUND PARAMEDICS

#### SERVING 4 MILLION PEOPLE

#### 97% SUCCESS RATE

#### ALL PTS BETWEEN 10 AND 30 MIN FROM TRAUMA CENTER

Prehospital Rapid Sequence Intubation Improves Functional Outcome for Patients With Severe Traumatic Brain Injury: A Randomized Controlled Trial

|                                                       | Rapid Sequence Intubation<br>Group (n = 157) | Hospital Intubation<br>Group (n = 142) | <b>P*</b> |                          |
|-------------------------------------------------------|----------------------------------------------|----------------------------------------|-----------|--------------------------|
| Primary outcome measure                               |                                              |                                        |           |                          |
| GOSe 1 (dead)                                         | 53                                           | 55                                     |           |                          |
| GOSe 2 (vegetative state)                             | 1                                            | 3                                      |           | NO DIFFERENCE IN TH      |
| GOSe 3 (severe disability-lower end)                  | 19                                           | 20                                     |           | PRIMARY OUTCOMES         |
| GOSe 4 (severe disability-upper end)                  | 4                                            | 8                                      |           |                          |
| GOSe 5 (moderate disability-lower end)                | 32                                           | 18                                     |           | <b>"MASSAGE THE DATA</b> |
| GOSe 6 (moderate disability-upper end)                | 21                                           | 14                                     |           |                          |
| GOSe 7 (good)                                         | 20                                           | 12                                     |           |                          |
| GOSe 8 (normal)                                       | 7                                            | 12                                     |           |                          |
| Median GOSe (IQR)                                     | 5 (1-6)                                      | 3 (1-6)                                | 0.28      |                          |
| Secondary outcome measures                            |                                              |                                        |           |                          |
| Good neurologic outcome (GOSe 5-8)                    | 80/157 (51%)                                 | 56/142 (39%)                           | 0.046     | $\leftarrow$             |
| Age $\leq 60$ yr and GOSe 5-8                         | 75/121 (62%)                                 | 54/105 (51%)                           | 0.094     | $\sim$ 1                 |
| Age $>60$ yr and GOSe 5-8                             | 5/35 (14%)                                   | 2/35 (6%)                              | 0.23      | Good neuro outcome       |
| Transport time ≥20 min and GOSe 5-8                   | 48/97 (50%)                                  | 33/87 (38%)                            | 0.12      |                          |
| Initial GCS 5-9 and GOSe 5-8                          | 45/81 (57%)                                  | 34/73 (47%)                            | 0.27      | PH RSI 51%               |
| Survival at hospital discharge number                 | 107 (67%)                                    | 97 (64%)                               | 0.57      |                          |
| *P values are calculated by either a $\chi^2$ test or | a Mann-Whitney U test.                       |                                        |           | Hospital 39%             |
| GOSe indicates Glasgow Outcome Scale-exter            |                                              | ilasgow Coma Scale.                    |           | p=0.046                  |

|                                        | Rapid Sequence Intubation<br>Group (n = 157) | Hospital Intubation<br>Group (n = 142) | <b>P*</b> |
|----------------------------------------|----------------------------------------------|----------------------------------------|-----------|
| Primary outcome measure                |                                              |                                        |           |
| GOSe 1 (dead)                          | 53                                           | 55                                     |           |
| GOSe 2 (vegetative state)              | 1                                            | 3                                      |           |
| GOSe 3 (severe disability-lower end)   | 19                                           | 20                                     |           |
| GOSe 4 (severe disability-upper end)   | 4                                            | 8                                      |           |
| GOSe 5 (moderate disability-lower end) | 32                                           | 18                                     |           |
| GOSe 6 (moderate disability-upper end) | 21                                           | 14                                     |           |
| GOSe 7 (good)                          | 20                                           | 12                                     |           |
| GOSe 8 (normal)                        | 7                                            | 12                                     |           |
| Median GOSe (IQR)                      | 5 (1-6)                                      | 3 (1-6)                                | 0.28      |
| Secondary outcome measures             |                                              |                                        |           |
| Good neurologic outcome (GOSe 5-8)     | 80/157 (51%)                                 | 56/142 (39%)                           | 0.046     |
| Age ≤60 yr and GOSe 5-8                | 75/121 (62%)                                 | 54/105 (51%)                           | 0.094     |
| Age >60 yr and GOSe 5-8                | 5/35 (14%)                                   | 2/35 (6%)                              | 0.23      |
| Transport time ≥20 min and GOSe 5-8    | 48/97 (50%)                                  | 33/87 (38%)                            | 0.12      |
| Initial GCS 5-9 and GOSe 5-8           | 45/81 (57%)                                  | 34/73 (47%)                            | 0.27      |
| Survival at hospital discharge number  | 107 (67%)                                    | 97 (64%)                               | 0.57      |

There were 10 arrests after RSI in the prehospital group and none in the hosptial Group

TABLE 3. Outcomes at 6 Months After Injury

There was no difference in outcome between the groups based on initial GCS 3 to 4 compared with initial GCS 5

## PREHOSPITAL DEAT

250

ivec

## • THERE WERE 10 DEATHS AFTER

- 2 HAD SBP = 70 PRIOR TO RS
- 5 HAD CONFIRMED TUBE
  - \* 2 INITIAL SBP =
  - \* 3 INITIAL NOM
- 3 HAD FA

# WHAT IF THE 10 LIVED?

Assume that PH and ER rates are the same, and the 10 that died at PH-RSI were saved

Then PH had a 30% death rate and ED had a 38% death rate. p=.0327

| Row # | Category | Observed | Expected # | Expected |
|-------|----------|----------|------------|----------|
| 1     | PH Dead  | 47       | 60         | 38.217%  |
| 2     | PH Alive | 110      | 97         | 61.783%  |

37

# IF WE CAN PREVENT HYPOTENSION AND HYPOXIA DURING RSI....

# **POINTS TO CONSIDER**

#### PATIENTS AT RISK FOR HYPOTENSION

- SHOCK INDEX
- TRAUMA (SHOCK OR NOT)
- TBI POPULATION IS VULNERABLE
- ANY PERSON UNDERGOING RSI

39

# HYPOTENSION

# WHAT CAUSES HYPOTENSION

41

#### • DRUGS?

REDUCTION IN ADRENERGIC TONE?

#### CHANGES IN CARDIAC OUTPUT?

- DRUGS? DOSES?
- PRELOAD?
- CONTRACTILITY

## DRUGS

- BENZODIAZEPINES
- OPIATES
- ETOMIDATE
- KETAMINE
- DEXMETETOMIDINE

42

# DRUGS

# CHOOSE THE RIGHT AGENT CHOOSE THE RIGHT DOSE

## **ADRENERGIC TONE**

• LOWER DRUG DOSES

• TITRATED DRUG DOSES ?

• **PREVENTATIVE PRESSORS** ?

Vagal slowing of the heart during haemorrhage: observations from 20 consecutive hypotensive patients

K SANDER-JENSEN, N H SECHER, P BIE, J WARBERG, T W SCHWARTZ

# ALL 20 HAD HIGH VAGAL TONE

#### BIOCHEMICAL MARKER

# **CARDIAC OUTPUT**

- PRETREAT WITH VOLUME ?
- PRESSORS TO INCREASE PRELOAD ?
- PRELOAD PHYSICAL MANEUVERS?
- Address vagal tone ?

CO = HR x SV

# OXYGENATION

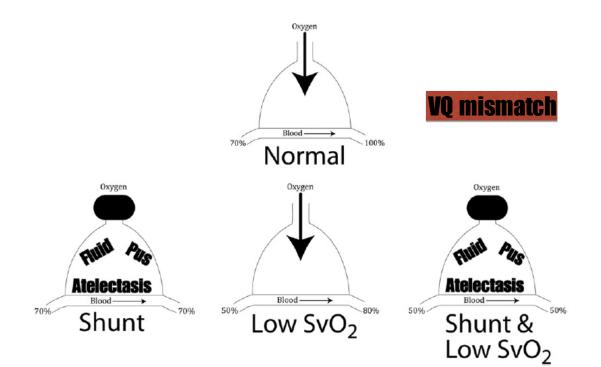
#### CAUSES OF HYPOXEMIA

• LOW FIO2 AND TOXINS

• EXTRA-PULMONARY SHUNT

INTRAPULMONARY SHUNT

• PHYSIOLOGIC SHUNT AT ALVEOLI (APEX)


Low SvO2

DEAD SPACE

• APNEA

Oxygen Carrying Capacity? Acidosis Anemia

#### HYPOXIA - RSI





# **TREATMENT BUNDLES**

- DELAYED SEQUENCE INTUBATION
- NO INTUBATION
- PREOXYGENATION
- ADDRESSING PRELOAD
- PRESSORS
- MODIFY VENTILATION TECHNIQUES

# .....OTHER STUFF

## **ASPIRATION AND VAD**

• ELEVATE THE HEAD OF THE BED

ET TUBEST WITH SUPRAGLOTTIC SUCTION