Shock in the Pediatric Patient

Initial Assessment & Interventions

Dusty Lynn RN BS CCRN CPEN NR EMT-P
RN Coordinator
University of Virginia Trauma Program
Objectives

- Compare and contrast the 4 main types of shock in the pediatric patient
- Given a case scenario, identify the type of shock based the ABC assessment, and discuss the initial treatment priorities
Response to “Pediatric unknown” Call
Kids are Special

- One size does NOT fit all!
 - Variable weight and height
 - Smaller body mass
 - Organs closer together - high risk for multi-organ injury
 - Kinetic energy has more profound impact
 - Bone are more flexible
 - Significant injuries easier to miss
 - Don’t understand cause & effect
 - Harm or risk
Children are just small adults

Know the main differences in anatomy and how they would affect responses to illness

Do not go by memory—carry a reference for:

Weight estimation
Vital signs
Equipment sizes
Medications
&
Review review review...
Definition of Shock

- Critical mismatch of the delicate balance between cellular needs (demand) and perfusion (delivery)
Pediatric Definition of Shock

Tachycardia + Poor Perfusion =

SHOCK

Note that Pediatric patients can be in severe shock and still have normal blood pressure!
DO2

• Its all about delivery of oxygen/ nutrients to the cell

• Oxygen delivery is the amount of oxygen transported from the pulmonary system to the microcirculation

• In healthy individuals:
 • Oxygen consumption = Oxygen delivery
SHOCK

- When the metabolic demand is greater than the metabolic delivery, shock occurs.
- If delivery is less than need, then shock occurs.
- The definition of shock does NOT depend on blood pressure.
Simply Put

Tachycardia + Poor Perfusion =

SHOCK

All etiologies of shock cause imbalance of metabolic demand vs. metabolic need
Cardiovascular VS

- **HR**
 - Know norms for pediatric patients
 - Know extremes
 - 180, 220
 - < 60

- **B/P**
 - Choose proper equipment
 - Recognize children can be in shock, with a WNL B/P
Blood Pressure

<table>
<thead>
<tr>
<th>Duration</th>
<th>Lowest acceptable Systolic pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 28 days</td>
<td>60</td>
</tr>
<tr>
<td>1 month – 1 year</td>
<td>70</td>
</tr>
<tr>
<td>1 year+</td>
<td>70 + (2 x age in years)</td>
</tr>
</tbody>
</table>
Pediatric patients can be in severe shock and still have normal blood pressure!
Classification of Shock

• Severity
 • Compensated: Not hypotensive
 • Minimally acceptable SBP:
 • 1 year and older: $70 + 2(Age)$ up until 90 systolic BP

• Hypotensive

• Etiology
 • Hypovolemic
 • Distributive
 • Cardiogenic
 • Obstructive
Hemodynamic Compensation Factors
In Pediatric Shock

- Blood Pressure
 - Systemic Vascular resistance
- Cardiac Output
- Heart Rate
- Stroke Volume
- Pre-load
- Myocardial Contractility
- After load
General Goals of Shock Management: Improve DO2

1. Optimize O₂ content & delivery
2. Improve volume and distribution of cardiac output
3. Reduce O₂ demand
4. Correct metabolic derangements
 - Hypoglycemia
 - Hypocalcemia
 - Hyperkalemia
 - Metabolic acidosis
5. PREVENT CARDIAC ARREST
I. Hypovolemic Shock

- Intravascular Volume Loss
 - Hemorrhagic
 - Trauma
 - Surgery
 - GI bleed
 - Non Hemorrhagic
 - Intravascular
 - GI
 - Interstitial
 - Burn
 - Sepsis
 - Ascites
 - Nephrotic syndrome
Hypovolemic
Non Hemorrhagic or Hemorrhagic.

- S/S related to ▼ in preload = ▼ in DO2
 - Often tachypneic, tachycardic, compensatory increased contractility, poor perfusion/delayed cap refill, cool skin, decreased pulses, altered mental status
Hypovolemic

1. Optimize O2 content in the blood
 • High concentration of FIO2
 • Consider mechanical ventilation if needed to correct V/Q mismatch
 • Consider PRBC’s IF H/H ↓

2. Improve volume & distribution of CO
 • Give volume
 • 20cc/kg crystalloid
 • 10cc/kg PRBC’s on going hemorrhage, or poor response to 2-3 crystalloid boluses
 • Look for ongoing volume loss
Treatment Goals Cont

3. Reduce O2 demand
 • Treat fever
 • Ventilatory support if needed

4. Correct metabolic derangements
 • Hypoglycemia
 • Hypocalcaemia
 • Hyperkalemia
 • Metabolic acidosis= give volume
8-lb Newborn = 3.64-kg
Total circulating volume = 364-cc
100cc/KG
Soda can = 335 cc/ml

60-lb Child = 27-kg
TV = 2.2-L
2-L Soda bottle

125-lb Adult = 56kg
TV = 4.5 L
two 2-L Soda bottles
II: Distributive Shock

• Types of Distributive Shock
 • Septic
 • Anaphylactic
 • Neurogenic
Distributive Shock- Treatment Goals

1. Optimize O2 content in the blood
 High concentration of FIO2
 • Consider mechanical ventilation if needed to correct V/Q mismatch
 • Consider PRBC’s in H/H ↓

2. Improve volume & distribution of CO: restore hemodynamic instability
 • Give volume
 • Overcome dilated vascular space-
 • Vasopressors
 • Vasopressors- Goal- SVO2 > 70%
Treatment Goals for Distributive Shock Cont.

3. Reduce O2, metabolic demand
 - Treat fever

4. Correct metabolic derangements
 - Hypoglycemia
 - Hypocalcemia
 - Hyperkalemia
 - Metabolic acidosis
 - Volume
 - Vasopressors
 - Ventilation
 - Alkalinization

5. PREVENT CARDIAC ARREST
Distributive - Septic Shock
Definitions

SIRS = Systemic inflammatory process

Sepsis + SIRS in the presence of infection

Septic Shock = Sepsis & cardiovascular dysfunction
Systemic Inflammatory Response Syndrome “SIRS”

The presence of fever &/ or abnormal WBC and at least one of the following:

• Tachycardia

• Tachypnea

• Sepsis is SIRS + infection
Sepsis = SIRS + Infection

Mechanism

• Infectious organisms and their by-products/endotoxins trigger immune and inflammatory cascades (vasodilation)

• Vaso/venodilation caused by cytokine release damages vessel lining > increased cell permeability (capillary leak)

• DIC (which is why some septic pts need blood transfusions)

↓ in preload + ↑ vasodilatation + capillary leak = ↓ in DO2
Treatment:

Distributive- Septic Shock

1. **Optimize O2 content in the blood**
 - High concentration of FIO2
 - Consider mechanical ventilation if needed to correct V Q mismatch
 - Consider PRBC’s in H/H ↓

2. **Improve volume & distribution of CO: restore hemodynamic instability**
 - Give volume
 - Overcome dilated vascular space-
 - Vasopressors

 Vasopressors- Goal- SVO2 > 70%

 - Normotensive: Dopamine
 - Warm/vasodilated ↓ BP- Norepi
 - Cold/vasoconstricted hypotensive- epinephrine
Septic Shock- Treatment goals cont

3. Reduce O2 demand
 • Treat fever
 • Identify and control infection

4. Correct metabolic derangements
 • Hypoglycemia-
 • Hypocalcemia
 • Hyperkalemia
 • Metabolic acidosis

PREVENT CARDIAC ARREST
 • Continuous monitoring and frequent reassessments as sepsis can be a combination of distributive, hypovolemic, cardiogenic and obstructive (DIC) shock, all of which can lead to cardiac arrest
 • Etomidate for intubation??
Distributive Shock

Anaphylactic Shock
Distributive Anaphylaxis

• Mechanism
 • Acute severe systemic reaction to antigen

• Clinical Assessment
 – Agitation, anxiety
 – Angioedema
 – Respiratory distress
 • Stridor/ wheezing/ prolonged expiration
 – Tachycardia, hypotension
 – Uticaria
 – N/ V
 – Abdominal pain
1. Optimize O2 content & delivery
 - *Fio2*
 - *Bronchodilators*

 • Improve volume and distribution of cardiac output
 - *IM Epinephrine!*
 - Vasopressors
 - Volume

2. Reduce O2 demand & 4. Correct Metabolic derangements
 (reverse or block uncontrolled release of allergic response Mediators)

 EPINEPHRINE
 - Antihistamines
 - H1 blocker/ diphenhydramine
 - H2 blocker/ ranitidine, famotidine
 - Corticoid steroids
Distributive

Neurogenic

• Sudden loss of sympathetic tone of smooth muscle; spinal shock, head injury

• S/S: **Bradycardia** + **hypotension**, hypothermia

• Wide pulse pressure, low diastolic B/P, diaphragmatic breathing

• Initial tx:
 • ABC’s
 • Position pt flat or head down
 • Volume
 • Warm, or cool as needed
 • Vasopressors if needed
Neurogenic Shock

Hypotension - Decrease in Blood Pressure
Bradycardia - Slow heart rate
Warm, dry extremities
Peripheral vasodilation and venous pooling
Poikilothermia (Cold Body)
Decreased cardiac output (with cervical or high thoracic injury)
III: Cardiogenic Shock

Pump Failure
Cardiogenic Shock

\[\downarrow SV + \downarrow CO = \downarrow DO_2 \]

- CHD, Post ischemic event, acquired HD, sepsis, cardiac tamponade, drugs, rhythm disturbances (SVT)

- **Clinical Assessment**
 - AMS
 - \(\uparrow \) RR, \(\uparrow \) WOB, crackles/rales.
 - \(\uparrow \) HR, ? Gallop/S3, narrow pulse pressure
 - Hepatomegaly, cardiomegaly
Treatment Goals: Cardiogenic Shock

1. Optimize O2 content in the blood
 - High concentration of FIO2
 - Consider mechanical ventilation if needed to correct V/Q mismatch & decrease cardiac work load
 - Consider PRBC’s in ↓ H/H

2. Improve volume & distribution of CO/ increase ventricular output and cardiac function
 - Consider **cautious** slow infusion of 5-10cc/KG observing for response
 - Expert consultation for proper selection of vasodilator/ phosphodiesterase enzyme inhibitors to improve CO with minimal increase on myocardial O2 demand
 - Consider ECLS if other methods ineffective
Treatment Goals

Cardiogenic Shock

1. Optimize O2 content in the blood
 - High concentration of FIO2
 - Consider mechanical ventilation if needed to correct V Q mismatch & decrease cardiac work load
 - Consider PRBC's in ↓ H/H

2. Improve volume & distribution of CO/ increase ventricular output and cardiac function
 - Consider cautious slow infusion of 5-10cc/KG observing for response
 - Expert consultation for proper selection of vasodilator/ phosphodiesterase enzyme inhibitors to improve CO with minimal increase on myocardial O2 demand
 - Consider ECLS if other methods ineffective
IV: Obstructive Shock

Physical Obstruction of Circulation
Obstructive Shock

- Ductal Dependent Lesions
- Tension Pneumothorax
- Cardiac Tamponade
- Pulmonary Embolism
• CHD/ Ductal Dependent Lesions:
 • ABC’s, Expert Consult, PGE, (prepare for apnea)

• Tension Pneumothorax
 • Needle Decompress
 • Chest Tube

• Cardiac Tamponade
 • Pericardiocentesis
 • Fluid boluses simultaneously

• Pulmonary Embolism
 • Fluid bolus prn, ? Thrombolytics, consult
As if it were that easy

• Septic can also cause....
 - Cardiogenic
 - Hypovolemic
 - Obstructive (DIC)
 - Can be viral, fungal, parasitic
 - Antibiotic resistant

• Miscellaneous
 - MSOF
As an aside....

• AHA recommendations for SATS after ROSC
• Monitoring of SVO2
• Use of ED US for determining CO
General Volume Administration Guidelines

- **Hypovolemic/ Distributive** (non DKA)
 20cc/kg over 5-10 minutes

- **Cardiogenic Shock**
 5-10 cc/kg over 10-20 minutes

- **Poisonings/ Cardio-Toxins**
 5-10cc/kg over 10-20 minutes

- **DKA** with adequate BP
 10-20cc/kg over 1 hour
Remember - It's all about supply and demand
In Summary

Recognize the patient in shock

– Consider the etiology based on assessment and history
– Begin treatment based on that etiology and the goal of restoration of DO2
– Reassess frequently your interventions
 – Are you on the right track?
 – Are things changing?
You want to avoid this.....
Practice

Called to a home for infant with “difficulty breathing”
AOS to find 3mth infant in crib. No one speaks English. As you approach the infant, what 3 things are you assessing?

1. Airway- patent
2. Breathing- tachypnea
3. Circulation: Pale

What next?
Hands on A- B- C

Assessment

A- ? Patent? Need Adjunct?

B-
 • RR- 50
 • WOB- slight nasal flaring
 • BBS- clear

C- Hands on!
 • CRT- > 4 secs
 • Pulses> Central- weak, distal almost not palpable
 • Skin temp> core- WNL, peripheral > cool from knee down
 • HR> 180
 • ? B/P
 • General- foul smelling diarrhea noted.
 • ? Physiologic Status?
SHOCK!

- **Severity:**
 - Hypotensive

- **Etiology:**
 - Hypovolemic

- **Treatment**
 - ABC’s and VOLUME!

- **Reassessment after initial volume:**
 - Lethargic
 - Spontaneous RR: 40, BBS clear & =
 - HR 170, CRT > 4 sec’s
 - Priorities?
Evidence for the use of restrictive volume of intravenous fluid resuscitation, compared with unrestricted volume, by presenting illness and outcome.

<table>
<thead>
<tr>
<th>Illness</th>
<th>Studies</th>
<th>Survival to Hospital Discharge</th>
<th>Need for Transfusion or Diuretics</th>
<th>Need for Rescue Fluid</th>
<th>Mechanical Ventilation or Vasopressor</th>
<th>Time to Resolution of Shock</th>
<th>Total IV Fluids</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severe sepsis/septic shock</td>
<td>Santhanam 2008; Carcillo 1991</td>
<td>No Benefit</td>
<td>No Benefit</td>
<td>No Benefit</td>
<td>No Benefit</td>
<td>No Benefit</td>
<td>No Studies Available</td>
</tr>
<tr>
<td>Severe malaria</td>
<td>Maitland 2005; Maitland 2005</td>
<td>No Benefit</td>
<td>No Benefit</td>
<td>Harm</td>
<td>No Benefit</td>
<td>No Benefit</td>
<td>No Benefit</td>
</tr>
<tr>
<td>Severe febrile illness with some but not all signs of shock</td>
<td>Maitland 2011; Maitland 2013</td>
<td>Benefit</td>
<td>No Benefit</td>
<td>No Studies Available</td>
<td>No Studies Available</td>
<td>No Benefit</td>
<td>Harm</td>
</tr>
</tbody>
</table>

Evidence for the use of noncrystalloid intravenous fluid resuscitation, compared with crystalloid, by presenting illness and outcome.

<table>
<thead>
<tr>
<th>Illness</th>
<th>Studies</th>
<th>Survival to Hospital Discharge</th>
<th>Need for Other Treatment</th>
<th>Need for Rescue Fluid</th>
<th>Mechanical Ventilation or Vaspressor</th>
<th>Time to Resolution of Shock</th>
<th>Total IV Fluids</th>
<th>Hospital Duration of Stay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severe sepsis/septic shock</td>
<td>Upadhyay 2005</td>
<td>No Benefit</td>
<td>No Benefit</td>
<td>No Studies Available</td>
<td>No Benefit</td>
<td>No Benefit</td>
<td>No Studies Available</td>
<td>No Studies Available</td>
</tr>
<tr>
<td>Dengue shock</td>
<td>Cifra 2003; Dung 1999; Ngo 2001; Wills 2005</td>
<td>No Benefit</td>
<td>No Benefit</td>
<td>No Studies Available</td>
<td>No Benefits</td>
<td>Benefit</td>
<td>No Benefit</td>
<td>No Benefit</td>
</tr>
<tr>
<td>Severe febrile illness with some but not all signs of shock</td>
<td>Maitland 2011</td>
<td>No Benefit</td>
<td>No Benefit</td>
<td>No Studies Available</td>
<td>No Benefit</td>
<td>No Benefit</td>
<td>No Benefit</td>
<td>No Studies Available</td>
</tr>
</tbody>
</table>

References

- http://www.edwards.com/eu/Products/mininvasive/Pages/venousoxime-tryoverview.aspx
- http://circ.ahajournals.org/content/112/24_suppl/IV-143.full
Thank you!

DLynnRN@virginia.edu