Rapid Pediatric Trauma Emergency Assessment for the EMS Provider

Dusty Lynn, RN, BSN, CRN, CPEN, NR EMT-P
University of Virginia
Trauma Program
RN Coordinator

Discuss major differences in the pediatric patient and how children respond to trauma
Develop a rapid systematic approach to pediatric assessment
Review early management for prehospital care
Discuss specific injuries
- TBI
- NAT
Use case studies to practice the skill of rapid systematic assessment approach

Know the main differences in anatomy and how they would affect responses to trauma & illness
Do not go by memory—carry a reference for:
- Weight estimation
- Vital signs
- Equipment sizes
- Medications
- Review review review...

Children are just small adults

Kids are Special

- One size does NOT fit all!
 - Variable weight and height
 - Smaller body mass
 - Organs closer together—high risk for multi-organ injury
 - Kinetic energy has more profound impact
 - Bone are more flexible
 - Significant injuries easier to miss
 - Don’t understand cause & effect
 - Harm or risk
However, like adult calls...

BSI
- Scene Safe and scene size up
- General Impression + immediate life threats
- Primary Survey
- Patient priority
 - Rapid trauma survey with immediate transport/“load and go”
 - Focused exam
- Secondary survey
- Reassessments

Pediatric Trauma Epidemiology & Mortality
- Leading cause of death in children
- 50% children who die, die on scene
- Platinum 30” matter
- Head traumas are a leading cause of death
- Abdominal trauma most common form of trauma

Most Common Pediatric Trauma

- < 4 years: Drowning leading cause of death
- 5-9 yrs Pedestrian struck leading cause of death
- Blunt trauma often involves TBI in kids

Pediatrics... Defined... Sort of
- Neonates: birth to 1 month
 - Except for NRP
- Infants 1 mth- 12 mths
- Toddlers: 1-3 yrs
- Preschoolers: 3-6 yrs
 - Except for school systems
- School age: 6-12 years
 - But what about the 50kg 9 year old???
- Adolescent: 12-18
 - Except for pediatric trauma centers

Most Pediatric Common Emergencies
- Neonates
 - Infection, neglect
- Infant
 - Infection, neglect, abuse
- Toddler
 - Poisoning, Fall
- Preschool
 - Poisoning, Fall, Peds struck
- School age
 - Ped struck, Fall, Recreational sports
- Adolescent:
 - MVC, OD, Recreation

Patterns of Injury
Why DO we miss important assessment information?

- Lack of systematic approach
- Pediatric calls can be stressful
 - Parents/ family members stressed
 - Rarely used equipment
 - Rarely practiced/ used skills
 - Initial responses to severe injury can be subtle

Prevent secondary injury!
- Protect C Spine
- Forththought of potential problems
 - A B C not just for rule out
- Stop shock cascade
- Reduce occurrences & severity of increased ICP in head traumas

General Principles of Care
- Be Prepared
 - Practice/ Simulations/ Review
 - Know your available equipment
- Carry a reference
 - VS
 - Weight
 - Equipment
 - Medications
 - Age ≤ 8: \(\text{Age} \times 2 + 8 = \text{weight in kg} \)
 - Age ≥ 8: \(\text{Age} \times 3 = \text{weight in kg} \)
- Retrospective Review
 - Case review- Discussions, Video review
 - Self review

Spinal Motion Restriction
- Lift torso with padding for proper neck alignment
 - Avoid passive flexion
- Limit movement
- Allow for proper ventilation
 - Beware of straps
- Prevent aspiration

external meatus aligned with shoulder = neutral spine position

Airway
- Big tongue +
- Big head +
- More secretions +
- Small, Narrow, short airways =
- Many Ways to Obstruct
Children are Special
- Infants are nose breathers, they don’t mouth breathe well
 - Short neck
 - Small mandible
- Epiglottis is more U shaped
- Airway is funneled shaped
- Shorter
- Angled vocal cords
- More anterior
 - Easier to obstruct with over extension

Airway Assessment
- Is it patent? Are they at risk for it not to be?
 - Position
 - Capnography
 - Sats
 - Beware of occult foreign bodies

What is the most common cause of airway obstruction in the pediatric patient?

Airway Interventions
- Open airway
 - If not patent:
 - Maintain spinal motion restriction, jaw thrust, suction.
 - 100% oxygen. If they take an oral airway, they need to be ventilated.
- Positioning - unconventional techniques
- Suctioning
- Oral airways
- Intubation

Pediatric RSI
- Preoxygenate!!
- Prepare & Contingency Plan
 - Assessment & exam
 - Hx-
 - Preheat with RX
 - Atropine-for all < 1yr, any <3yrs receiving Suce, >3yrs w/ 2 doses of succ
 - Sedation and paralysis (except unresponsive)
 - Airway protection and positioning
 - ETT placement & Confirmation
 - Post intubation management

Intubation
- More Anterior
 - Easy to obstruct with over extension when intubating
- Diameter smaller, with larger tongues
- Trachea short & funnel shaped:
 - Easy right stem intubation
 - Tube easily dislodged
- DOPE

Breathing Assessment

PEARLS: Kids are more likely to die from hypoxia
- Progression of respiratory distress to failure then arrest ensues quickly
- One of the first signs of hypoxia and shock is AMS &/or tachycardia
Children are Special..

- Lungs are less compliant
- Ribs are more compliant
 - Pliable thoracic cavity & mobile mediastinum
 - Occult injuries common
 - High risk for tracheobronchial injuries, especially tension pneumothorax
 - Weak accessory muscles = poor reserve
 - Horizontally aligned ribs - diaphragm dependent belly breathers. Less abdominal fat - organs move upward when supine
 - Pulmonary contusion common
 - Gastric distention & positioning quickly effects WOB
 - Increased metabolism = ↑ O2 consumption
 - Less tolerant of hypoxia

Respiratory Exam

- Assess
 1. WOB
 2. BBS
 3. RR - breathing at an adult rate may mean impending respiratory FAILURE
- Respiratory Distress?
 - ↑ WOB - BEWARE of irregular breathing patterns
 - BBS
 - ↑ or ↓ in RR
 - Grunting: Exhaling against a partially closed glottis in attempt to generate/PEEP & preserve resting lung volume. Always indicator of severe illness
- Respiratory Failure?
 - Cyanosis
 - Poor ventilation
 - Head bobbing = impending failure
 - Apnea OR gasping = Respiratory ARREST

Breathing Problems

- Apnea/ Gasping = (CHECK A PULSE)
 - Obstructed airway
 - Position
 - Foreign body
 - TBI/ICP
 - General prolonged hypoxia
 - Pneumothorax
 - Tension pneumothorax

Interventions

- Protect C spine
- Suction
- Prevent respiratory arrest
 - Do not constrict abdomen or chest with securing devices
- BVM
 - Avoid soft tissue occlusion
 - Pressure ocular, airway
 - Fingers, mask

Advanced Respiratory Interventions

- Size of ETT
 - \((\text{Age} + 16) / 4\)
 - Size of pinky finger
 - Size of nasal
- Needle decompression

Cardiovascular Assessment

- It's All About Perfusion...

PEARLS:

- A pediatric patient can be in life threatening shock & still have a normal BP
- HR is one of the 1st VS to change when a child is sick
- Hypothermia ensues quickly and can be the cause of PEA arrest in a sick child
Children are Special

- Metabolism
- HR
- BP
- Thinner skin
- 70-80cc /kg blood volume

Circulatory Assessment

Observation of Color & Hands On Assessment
- Compare pulses:
 - Central vs. distal/peripheral
 - Effected by Edema
 - Large body size
- HR
- Skin temp
- Capillary Refill time

Blood Pressure

<table>
<thead>
<tr>
<th>Age</th>
<th>Lowest acceptable Systolic pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 28 days</td>
<td>60</td>
</tr>
<tr>
<td>1 month – 1 year</td>
<td>70</td>
</tr>
<tr>
<td>1 year+</td>
<td>70 + (2 x age in years)</td>
</tr>
</tbody>
</table>

Diastolic Pressure should be 2/3 systolic
Response to Hypovolemia

- 10-15% loss of volume:
 - Mild tachycardia, prolonged CRT, skin cool, mottled
 - Anxious, irritable, confused
- 30%
 - Severe Tachycardia, diminished peripheral pulses, hypotensive
 - Minimal response to pain
- 30-45%
 - Narrow pulse pressure, weak central pulses
- > 45%
 - Profound hypotension, pale, cold skin, bradycardic
 - Coma

Pediatric Definition of Shock

Tachycardia + Poor Perfusion = **SHOCK**

Note that Pediatric patients can be in severe shock and still have normal blood pressure!

Disability...

- Kids have a larger body surface area to size:
 - Set up for hypothermia
 - Immature temperature regulation
- Larger head to body ratio:
 - Higher risk for TBI

Level of Consciousness

Responsiveness to stimulation

- Awake- alert without stimulation
- Verbal
- Pain
- Unresponsive

Children who are quiet after a traumatic event are most always in shock
Level of Consciousness

This is the normal response in a child who has been hurt

Exposure & Emotions

Secondary Survey & Reassessments

Done En Route to Trauma Center

- Head to Toe eval
- SAMPLE
- H’s & T’
- ABD decompression
- Additional IV site
- Look for missed injuries

IF a Child decompensates at any point, go back to the A B C assessment!

Secondary Assessments

- Remember: atropine (if given for RSI) will dilate pupils but does not cause FIXED pupils
- Some life threatening injuries may be missed on the initial A B C exam (ie open chest wound) do not move on to next phase of care until initial A B C’s are stabilized
- If your intervention did not stabilize the problem, recheck your intervention, then look for another reason for the problem

2015 AHA Recommendations

- The available evidence does not support the routine use of atropine preintubation of critically ill infants and children.
- It may be reasonable for practitioners to use atropine as a premedication in specific emergency intubations when there is higher risk of bradycardia (eg, when giving succinylcholine as a neuromuscular blocker to facilitate intubation). (Class III, LOE C-LD)
- NEW: OCT 2015
- A dose of 0.02 mg/kg of atropine with no minimum dose may be considered when atropine is used as a premedication for emergency intubation. (Class III, LOE C-LD)
- This new recommendation applies only to the use of atropine as a premedication for infants and children during emergency intubation.
Secondary Assessment
- Abd tenderness could indicate significant trauma.
- Abd distension consider significant trauma until proven otherwise.

H's & T's
- Not are they only the reason a child could present in extremis, they are also the reason they could decompensate while in our care.

<table>
<thead>
<tr>
<th>Symptoms</th>
<th>Causes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypoxia</td>
<td>Tablets/TOXINS</td>
</tr>
<tr>
<td>Hydrogen ion - acidity</td>
<td>Tamponade (cardiac)</td>
</tr>
<tr>
<td>Hyperkalemia / Hypokalemia</td>
<td>Tension pneumothorax</td>
</tr>
<tr>
<td>Hypothermia</td>
<td>Thrombosis, coronary (ACS)</td>
</tr>
<tr>
<td>Hypoglycemia & other metabolic disorders</td>
<td>Thrombosis, pulmonary (embolism)</td>
</tr>
<tr>
<td>Hypovolemia</td>
<td>Trauma</td>
</tr>
</tbody>
</table>

Having a well practiced systematic approach keeps everyone focused on the priorities on hand

Traumatic Brain Injury
- 1 million children evaluated yearly - 7000 pediatric deaths per year
- 80-90% are mild
- Most common cause of mortality and morbidity

Etiology:
- Infants: abuse
- Toddlers: abuse and falls
- School aged: play and sports injuries and MVC
- Adolescents
 - MVC and assault

Predisposed
- Large heads
- Poor neck muscle control
- Thin, pliable skulls

Pathophysiology
- Acceleration
 - Stationary head hits by moving object
 - Least fatal
- Deceleration
 - Moving head hits stationary object
 - Most severe for brainstem injuries
- Rotational
 - Vigorous back and forth movement
 - Head hit at an angle
 - Diffuse injury, large SDH
- Direct blow
 - Causes fracture
 - Meningeal artery or dural venous tear causes EDH

Munro-Kellie Doctrine
- In the skull:
 - Brain
 - Blood
 - CSF
- Cushings triad
Level I = MUST DO!
- Monitor Sats
- Maintain IV
- Give pain & sedation Rx
- Monitor Capnography

Level II
Should be Considered
All the previous intervention AND:
- Avoid Steroids (often given prior to extubation)
- Avoid Hypothermia (DCR)
- Consider 3% NS for increased ICP, ulcer prophylaxis, TF, foley

Level III
May be Considered
(Who knows??) all the previous +
- ICP Monitoring, ICP drain, HTS, pressers, paralytics, ventilation
- Sz Rx, Diuretics

Avoid Secondary Injury
- Single episode of hypotension or hypoxia can increase risk of mortality by 150%
- Airway & C Spine
 - Control
 - Breathing
 - Beware of gastric distention = vomit = ICP = Secondary injury
- Circulation
 - Treat hypovolemic shock aggressively

TBI Treatment
- Prevent secondary injury
- Cardiovascular: 1 episode of hypotension doubles mortality
 - Avoid hypotension and hypoperfusion
 - Assess frequently, shock occurs BEFORE hypotension
 - HOB 30 degrees
 - Correct coagulopathy
 - Volume
 - Pressors
 - Keep MAP > 50 infants > 60 child > 70 in adolescent

TBI Treatment
- Establish spinal movement restriction
- Establish airway control
- Monitor ETCO2 & Pulse ox immediately
- 100% FIO2 for all pediatric TBI
 - Avoid hypoxia
 - Avoid hypo and hyper ventilation. ETCOs 35-45
- Avoid hyperglycemia & hypoglycemia
- Avoid hyperthermia & hypothermia
- ? Decompressive craniotomy
 - ? Saves pt? Not brain
Signs of Increased ICP

- **Neuro Changes**
 - AVPU
- Pupils
- Vomiting
- Cushings triad

Herniation Syndromes

<table>
<thead>
<tr>
<th>Location</th>
<th>Eye Findings</th>
<th>Gross Motor Findings</th>
<th>Respiration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uncal (lateral transtentorial)</td>
<td>Bilateral fixed pupils, dilatation and ptosis</td>
<td>Pupillary decussation, hemiparesis</td>
<td>Irregular</td>
</tr>
<tr>
<td>Diencephalic</td>
<td>Small midpupils, but reactive to light</td>
<td>Decorticate posturing, hypertonia</td>
<td>Cheyne-Stokes (episodes of apnea and tachypnea)</td>
</tr>
<tr>
<td>Midbrain</td>
<td>Midpoint fixed pupils</td>
<td>Decerebrate posturing</td>
<td>Hyperventilation</td>
</tr>
<tr>
<td>Medullary</td>
<td>Dilated and fixed pupils</td>
<td>No response to pain</td>
<td>Irregular or gasping</td>
</tr>
</tbody>
</table>

Hyperventilation

- Transient or bridging hyperventilation only indicated in cerebral herniation
 - Decerebrate posturing
 - Rapidly decreasing GCS
 - Flaccid (motor score of 1)
 - Unequal pupils or fixed and dilated pupils
 - ETCO2 > 30-35
- Ventilate
 - Infants 35 bpm
 - Children 30 bpm

Hypertonic Saline

- Hypertonic saline decreases ICP
- Preserves intravascular volume
- Theoretically restores normal cell resting membrane potential, inhibits inflammation, stimulates atrial natriuretic peptide release and enhances cardiac output
- 0.1-1 cc/kg/hr or 1-6 cc/kg bolus
- Keep serum osmolality < 360

Non Accidental Trauma

Exact numbers hard to detect-est. 10% of ED visits from trauma in children <3 yrs are NAT
40% have no signs of external trauma on initial exam
80% of deaths from head trauma in children <2yrs are NAT Injuries
1. Skin lesions
2. Head trauma, injury
3. Fractures

EMS Calls & ED Visits

CHIEF COMPLAINTS

- Viral gastritis
- Seizures
- Flu
- Accidental head trauma
- Rule out sepsis
- Injuries

INJURIES FOUND

- Femur fx in children <1yr
- Humeral shaft fx in <3 yr
- Sternal fx
- Posterior rib fx
- Digit fx in children who are non ambulatory
High Suspicion

- Story inconsistent with child's developmental ability
- Exam pts carefully for acute and chronic trauma
 - Femur fx in children < 1yr
 - Humeral shaft fx in <3 yr
 - Sternal fx
 - Posterior rib fx
 - Digit fx in children who are non ambulatory

Shaken Baby Syndrome

- Life threatening injury in children <2yrs
- Mechanism
 - shaking the baby back and forth causing rapid acceleration and deceleration of the cranial contents against the skull. Shearing injuries of vessels, cervical spine injury and intraocular injury results.
- C/C: “not acting right”, sleepy, lethargic, seizures
- Often no external signs

NAT

- Careful documentation
- EMS Report to ED

Take Home Points

1. Children are not little adults
2. Recognize children can decompensate in minutes
3. Having a well rehearsed systematic method of assessment & treatment priorities saves lives

New Concepts in TBI

- DCR- Damage Control Resuscitation
- Hemostatic Resuscitation: Improving Outcomes by Early Reversing of ATC (Acute Traumatic Coagulopathy) -
 - Early Hemorrhage Control- DCS
 - Permissive hypotension
 - Limit dilution by limiting fluids
 - Target Coagulopathy
- 23.4% HS for rescue bolus 0.75cc x kg over 30” (instead of Mannitol)
- Avoid hypercloremia
- Care may be guided by biomarkers

References

- https://www.youtube.com/watch?v=9T7jQM015j
- https://www.youtube.com/watch?v=MxeStUoWqE4