

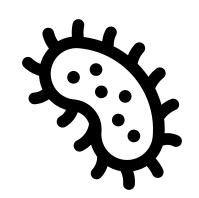
Division of

Consolidated Laboratory Services

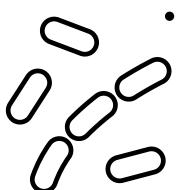
Apples to Apples:

Using Genomic Comparison to Aid in an Outbreak Investigation

Katelin Gali, MS, MLS (ASCP)^{CM} October 25, 2023

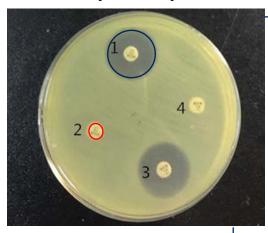

Objectives

- Improve understanding of whole genome sequencing (WGS)
- Explain how WGS can be used to assist in an antimicrobial resistant bacterial outbreak investigation
- Demonstrate DCLS WGS surveillance and reporting system



DCLS

Carbapenem Resistant Organisms (CRO)


- Carbapenem-resistant Enterobacterales (CRE)
- Carbapenem-resistant Pseudomonas aeruginosa (CRPA)

Carbapenem-resistant Acinetobacter
 baumannii complex (CRAB)

modified Carbapenem **Inactivation Method** (mCIM)

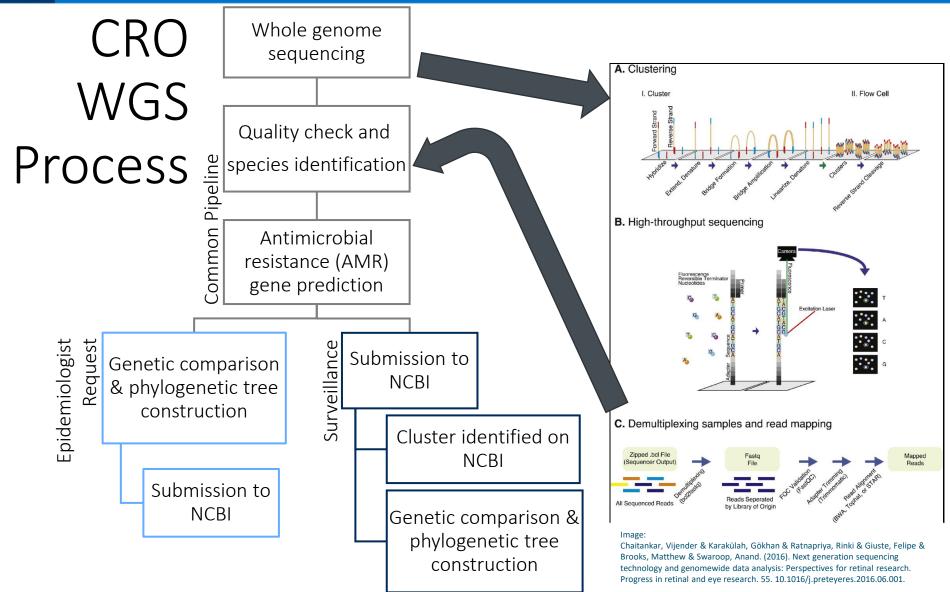

PCR Testing

CRE, CRPA, CRAB: KPC, NDM, VIM, IMP, **OXA-48**

CRAB:

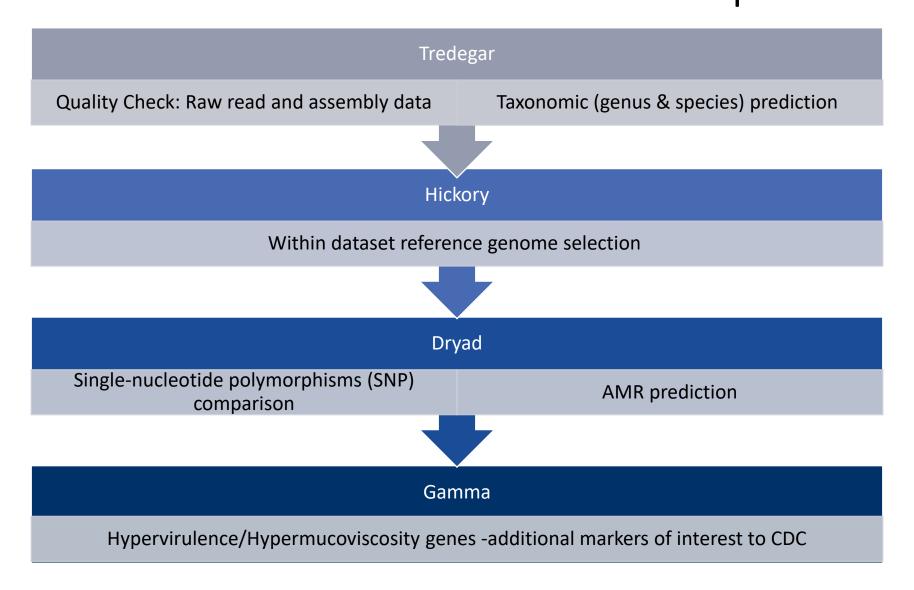
OXA-23, OXA-24/40, **OXA-58**

Antimicrobial Susceptibility Testing (AST)


WGS Candidate Criteria

- ☐ Enterobacterales with a non-KPC gene by PCR
- ☐ Pan-non-susceptible
- □ 2 or more PCR genes detected
- ☐ Carbapenemase +/PCR –
- ☐ Carbapenemase +/PCR +
 - **CRPA**
- ☐ PCR+ CRAB
- □ Pan-β-lactam resistant CRAB

Introduction to HAI/AR WGS at DCLS


- Instruments Utilized
 - Illumina MiSeq (routine)
 - Oxford Nanopore MinION (validation pending)
- Purpose
 - Aid CDC in surveillance for novel resistance mechanisms
 - Support epidemiologic investigation by VDH

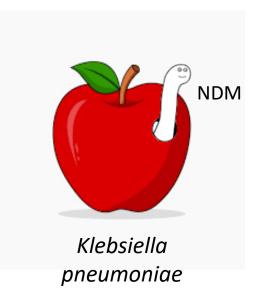
Bioinformatics Software and Pipelines

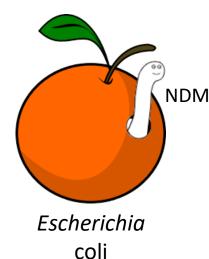
How to Request WGS Analysis

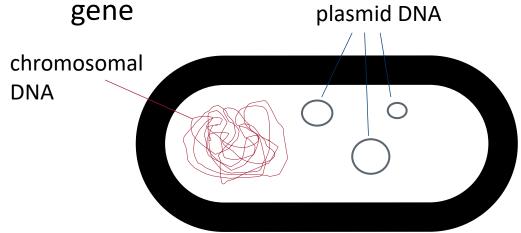
- R numbers (DCLS sample ID #) or patient information (name and DOB)
- Genus/species
- Outbreak ID (if available)
- Any additional suspected outbreak details
- Send request to dcls_ngsrequest@dgs.virginia.gov

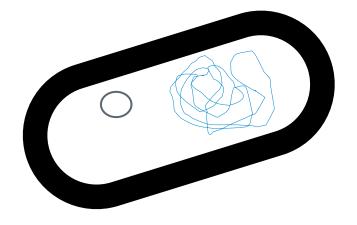
Outbreak Background Information

Specimen Collection Date	WGS ID	Specimen Source	Species ID	CRO PCR	Resistance Genes
12/22/2022	Patient 1	Peritoneal <i>Escherichia</i> fluid <i>coli</i>	OXA-48-like	OXA-181*	
12/22/2022	Isolate 1		coli	NDM	NDM-5
01/04/2023	Patient 1 Isolate 2	Peritoneal fluid	Klebsiella pneumoniae	OXA-48-like	OXA-181*
				NDM	NDM-5
02/23/2023	Patient 2	Urine	Klebsiella pneumoniae	OXA-48-like	OXA-181*
				NDM	NDM-5
Unknown	Patient 3	Rectal swab- colonization screening **	Klebsiella pneumoniae	NDM**	NDM-7


^{*}OXA-181 is an OXA-48-like gene

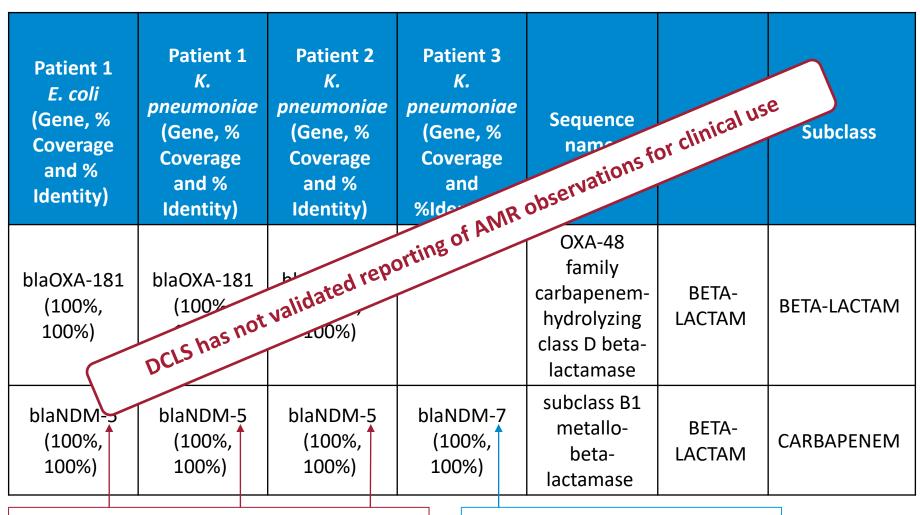

^{**}Colonization swab testing and sequencing performed by Maryland Department of **Health Laboratories Administration**




Genomic Comparison

- Can include colonization screening samples
- Must be same species or harbor the same plasmidmediated resistance gene

What is a Single Nucleotide Polymorphism (SNP)?


	Patient 1	Patient 2	Patient 3
Patient 1		2	25738
Patient 2	2		25900
Patient 3	25738	25900	

What makes a cluster of isolates?

Typical cluster criteria ~ ≤ 10 SNPs of the millions compared

Antimicrobial Resistance Gene Prediction

Same allele types = possible plasmid transfer

Different allele types = less likely to be a plasmid outbreak

DCLS | Division of Consolidated Laboratory Services

AST Results

Antimicrobial	Patient 2	Patient 1	Patient 1
Antimicrobiai	K. pneumoniae	K. pneumoniae	E. coli
Amikacin	Resistant	Resistant	Resistant
Ampicillin	Resistant	Resistant	Resistant
Ampicillin/Sulbactam	Resistant	Resistant	Resistant
Aztreonam	Resistant	Resistant	Resistant
Cefepime	Resistant	Resistant	Resistant
Cefazolin	Resistant	Resistant	Resistant
Ceftazidime	Resistant	Resistant	Resistant
Ceftazidime/Avibactam	Resistant	Resistant	Resistant
Ceftolozane/Tazobactam	Resistant	Resistant	Resistant
Ceftriaxone	Resistant	Resistant	Resistant
Ciprofloxacin	Resistant	Resistant	Resistant
Ertapenem	Resistant	Resistant	Resistant
Gentamicin	Resistant	Resistant	Resistant
Imipenem	Resistant	Resistant	Resistant
Levofloxacin	Resistant	Resistant	Resistant
Meropenem	Resistant	Resistant	Resistant
Piperacillin/Tazobactam	Resistant	Resistant	Resistant
Tetracycline	Intermediate	Intermediate	Resistant
Tobramycin	Resistant	Resistant	Resistant
Trimethoprim/Sulfamethoxazole	Resistant	Resistant	Resistant

Summary

- Patient 1 & 2 were genetically similar and had an epidemiologic link
- WGS data supported suspicion of transfer event
- Patient 3 was genetically distinct

Building Testing Capacity

- Oxacillinase (OXA) gene PCR testing for CRAB (implemented in August 2023)
- Colonization screening and sequencing of CRO isolates (validation in process)
- Long-read sequencing (development in process)
- Candida auris sequencing and colonization screening (development in process)

Acknowledgements

Lead Scientists

- Lauren Turner, PhD
- Alexandra Lorentz, PhD
- Logan Fink, MS
- LaToya Griffin-Thomas, PhD

Microbial Reference Group

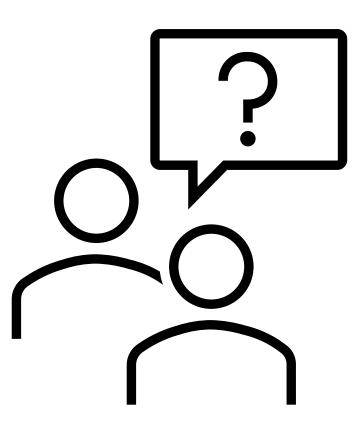
- Emily Craig, MS, M(ASCP)^{CM}
- Kristin DiBiase, MS, MLS (ASCP)^{CM}
- Katherine Wentz, MS, MLS (ASCP)^{CM}
- Sophia Stuart
- Andrew Timmes
- Ananda Jones

Sequencing and Bioinformatics Group

- Mary Toothman, MS
- Rachael St. Jacques, MS
- Nick Chen, MPH
- Andrew Hale
- Shelby Bennett, MS
- Molly Creighton, MS
- Hyunsook Moon, PhD
- Cheyanne Daniels

- Brenham Howard
- LaTia Purce
- Mackenzie Murphy
- LaTia Simon
- Corey Russell
- Darrius Sykes
- · Brenay Friend

Division of Consolidated Laboratory Services


The work described herein was funded by the Centers for Disease Control and Prevention Epidemiology and Laboratory Capacity for Prevention and Control of Emerging Infectious Diseases Cooperative Agreement with the National Center for Emerging and Zoonotic Infectious Diseases (5NU50CK000555-04-00).

Questions

